OpenSSL FIPS

Runtime Module
version 1.2
By the
Open Source Software Institute
http://www.o0ss-institute.org/

OPEN SOURCE . &

SOFTWARE INSTITUTE

OpenSSL FIPS 140-2 Security Policy

Version 1.3

May 12, 2010

http://www.oss-institute.org/
http://openssl.org/

OpenSSL FIPS 140-2 Security Policy

Copyright Notice

Copyright © 2003, 2004, 2005, 2006, 2007, 2008, 2009 the OpenSSL Team.

This document may be freely reproduced in whole or part without permission and without restriction.

Sponsored by

U.S. Department of Defense
Offices of Advanced Systems and Concepts
Open Technology Development program

Acknowledgments

Page 2 of 13

OpenSSL FIPS 140-2 Security Policy

The Open Source Software Institute (OSSI) serves as the "vendor" for this validation. Project management coordination for

this effort was provided by the OSSI:

Steve Marquess
Project Manager

John Weathersby
Executive Director

Open Source Software Institute
Administrative Office

P.0. Box 547

Ooxford, MS 38655

with technical work by:

Stephen Henson

4 Monaco Place,

Westlands, Newcastle-under-Lyme
Staffordshire. ST5 2QT.
England, United Kingdom

Andy Polyakov

Chalmers University of Technology
SE-412 96 Gothenburg

Sweden

301-524-9915
marquess@oss-institute.org

601-427-0152 office/601-818-7161 cell
jmw@oss-institute.org

601-427-0156 fax

http://oss-institute.org/

shenson@drh-consultancy.co.uk

http://www.drh-consultancy.co.uk/

in coordination with the OpenSSL Team at www.openssl.org.

appro@fy.chalmers.se

Validation testing was performed by Aspect Labs, a division of BKP Security, Inc. For information on validation or

revalidations of software contact:

Aspect Labs
3080 Olcott Street, Suite 110-A
Santa Clara, CA 95054-3221

888-347-7140
info@aspectlabs.com
http://www.aspectlabs.com/

Page 3 of 13

http://www.aspectlabs.com/
mailto:info@aspectlabs.com
file:///media/veridical/FIPS140_Object_Module/Docs/SecurityPolicy/Released/www.openssl.org
http://www.drh-consultancy.co.uk/
mailto:shenson@drh-consultancy.co.uk
http://oss-institute.org/
mailto:jmw@oss-institute.org
mailto:marquess@oss-institute.org

OpenSSL FIPS 140-2 Security Policy

Table of Contents
L. INEEOAUCTION. ...ttt ettt et e et e st e s bt e sbteeebeeeeeeas 5
2. MOdUIe SPECIfICALION.cceiuiiieiiieeiiieeiiee ettt ee et e et e et e et esabeessssnneeeeeeas 5
2.1 ROIES ANd SETVICES. ...ccouviiiiiiiiiiieeiieetteete ettt sttt et e e 6
2.2 POrts and INTEITACES.ccuueiiiiiiiiiieiieet ettt e e 7
P BN 15§l L £ OO UUORUU O SUPR ORI 7
2.4 Mitigation Of Other ATtACKS......cccuuiiiiiiiiiiiiiieeieeetee et e e e 9
2.5 PRYSICAL SECUTTLY...ceiiutiiiriiiiiiiie ittt ettt et e st s e e st e e sabeeeeesennees 9
3. SECUIE OPETALION.ceiutiieiiieeriiieeiieeeiieeeiteeeteeeeteeesbeeesbeeessseesssseesasseeasseesssesssseesseeennnns 10
4. Cryptographic Key Management...........cceeeeveeerieeeiiieniiieeniieeeieeesreeenireesssseesssseesnsnsseeeeens 11
4.1 KEY GENETALION.eeutieniiiiiieeieeeiteeiee sttt ettt sttt e s e s e e et e e saeneeesennee 11
4.2 KEY STOTAZE...ccouveeurieeireeitente ettt ettt ettt et et sae e s sae e s neesaee st e e seneee 11
4.3 K@Y A CCESS. uuteutieeeiiieenieeeitteeitee ettt eetteestteesabeessabeeesteessteesnsseesnsaeennsaeennseeenssaeesannnnes 11
4.4 Key Protection and ZeTrOiZatiON..........ccueeerureeriuieeriiieeriieesieeeseeeesseneeeeeessssnnneeeesssnnns 11
4.5 Cryptographic AIOTIthmS.coiiiiiiiiiiiiiieieeee e 11
Appendix A Installation INSErUCHIONS.eiiiuiiiiiiiiiiieiiiieeeee et 13

Page 4 of 13

OpenSSL FIPS 140-2 Security Policy

1. Introduction

This document is the non-proprietary security policy for the OpenSSL FIPS Runtime Module. This
document was prepared as part of the Federal Information Processing Standard (FIPS) 140-2 Level 1
validation process.

FIPS 140-2, Security Requirements for Cryptographic Modules, describes the requirements for
cryptographic modules. For more information about the FIPS 140-2 standard and the cryptographic
module validation process see http://csrc.nist.gov/cryptval/.

2. Module Specification

The OpenSSL FIPS Runtime Module (hereafter referred to as the Module) is a software library
supporting FIPS-approved cryptographic algorithms. For the purposes of the FIPS 140-2 level 1
validation, the OpenSSL FIPS Runtime Module v1.2 is a single shared library module file'. This
module provides a C-language application program interface (API) for use by other processes that
require cryptographic functionality.

For FIPS 140-2 purposes the Module is classified as a multi-chip standalone module. The logical
cryptographic boundary of the Module is the shared library file itself. The physical cryptographic
boundary of the Module is the enclosure of the computer system on which it is executing. The Module
performs no communications other than with the process that calls it. It makes no network or
interprocess connections and creates no files.

The Module was tested on the following platforms:

1) Wndows XP Service Pack 2
2) Fedora Core 7

Figure 2

1 libfips.so.0.9.8 (Linux/Unix) or | i bossl fi ps. dl | (Windows)

Page 5 of 13

http://csrc.nist.gov/cryptval/

OpenSSL FIPS 140-2 Security Policy

2.1 Roles and Services

The Module meets all FIPS 140-2 level 1 requirements for Roles and Services, implementing both
Crypto-User and Crypto-Officer roles. As allowed by FIPS 140-2, the Module does not support user
authentication for those roles. Only one role may be active at a time and the Module does not allow
concurrent operators.

The User and Crypto Officer roles are implicitly assumed by the entity accessing services implemented
by the Module. The Crypto Officer can install and initialize the Module. The Crypto Officer role is
implicitly entered when installing the Module or performing system administration functions on the
host operating system.

« User Role: Loading the Module and calling any of the API functions. This role has access to all of
the services provided by the Module.

+ Crypto-Officer Role: Installation of the Module on the host computer system. This role is assumed
implicitly when the system administrator installs the Module library file.

Service Role cspP Access
Symmetric User AES and TDES symmetric | read/write/execute
encryption/decryption keys
Key wrapping for key | User RSA public/private key read/write/execute
transport pairs
DH primitives User Diffie-Hellman keys read/write/execute
Digital signature User RSA and DSA asymmetric | read/write/execute

keys
Symmetric key User AES, TDES and HMAC read/write/execute
generation symmetric keys
Asymmetric key User RSA, DSA and Diffie- read/write/execute
generation Hellman keys
Keyed Hash (HMAC) | User HMAC keys read/write/execute
Message digest (SHS) | User none read/write/execute
Random number User RNG seed and seed key read/write/execute
generation (ANSI
X9.31)
Show status User none execute
Module initialization User none execute
Self test User Integrity-check HMAC key | execute
Zeroize User all symmetric and write

Page 6 of 13

OpenSSL FIPS 140-2 Security Policy

Service Role CSpP Access

asymmetric keys, as well as
parameters other than those
used by Data Input and
Output Interfaces

Table 2.1

Note that only the private key components of public/private key pairs are CSPs. The public keys are
assumed to be publicly visible.

2.2 Ports and Interfaces

The physical ports of the Module are the same as the computer system on which it is executing. The
logical interface is a C-language application program interface (API).

The Data Input interface consists of the input parameters of the API functions. The Data Output
interface consists of the output parameters of the API functions. The Control Input interface consists of
the actual API functions. The Status Output interface includes the return values of the API functions.

FIPS Interface Physical Port Module Interface
Data Input Physical Ports of a GPC API input parameters
Data Output Physical Ports of a GPC API output parameters
Control Input Physical Ports of a GPC API function calls and

parameters, other than
those used by Data Input
and Output interfaces

Status Output

Physical Ports of a GPC

API return codes

Power Input

Power Port of a GPC

N/A

2.3 Self Tests

Table 2.2

The Module performs both power-up self tests at module initialization and conditional tests during
operation. Input, output, and cryptographic functions cannot be performed while the Module is in a
self-test or error state as the module is single threaded and will not return to the calling application until
the power-up self tests are complete. If the power-up self tests fail subsequent calls to the module will
fail and thus no further cryptographic operations are possible.

Power-Up Self Tests

Page 7 of 13

OpenSSL FIPS 140-2 Security Policy

Algorithm Test

AES KAT
Triple-DES KAT

DSA signatures pairwise consistency test,

sign/verify

RSA signatures KAT

ANSI X9.31 PRNG KAT
HMAC-SHA-1 KAT
HMAC-SHA-224 KAT
HMAC-SHA-256 KAT
HMAC-SHA-384 KAT
HMAC-SHA-512 KAT

SHA-1 KAT?

SHA-224 KAT®

SHA-256 KAT?

SHA-384 KAT?

SHA-512 KAT®

module integrity check HMAC-SHA-1

Table 2.3a
Conditional Self Tests
Algorithm Test

DSA key pair generation | pairwise consistency

RSA key pair generation | pairwise consistency

PRNG continuous RNG test
Table 2.3b

A single initialization call, FIPS_mode_set, is required to initialize the Module for operation in the
FIPS 140-2 Approved mode. When the Module is in FIPS mode all security functions and
cryptographic algorithms are performed in Approved mode.

2 Tested as part of the HMAC known answer tests.

Page 8 of 13

OpenSSL FIPS 140-2 Security Policy

The FIPS mode initialization is performed when the application invokes the FIPS_mode_set call which
returns a “1” for success and “0” for failure. Interpretation of this return code is the responsibility of
the host application. Prior to this invocation the Module is uninitialized in the non-FIPS mode by
default.

The FIPS_mode_set function verifies the integrity of the runtime executable using a HMAC-SHA-1
digest computed at build time. If this computed HMAC-SHA-1 digest matches the stored known digest
then the power-up self-test, consisting of the algorithm specific Pairwise Consistency and Known
Answer tests, is performed. If any component of the power-up self-test fails an internal global error
flag is set to prevent subsequent invocation of any cryptographic function calls. Any such power-up
self test failure is a hard error that can only be recovered by reinstalling the Module®. If all components
of the power-up self-test are successful then the Module is in FIPS mode. The power-up self-tests may
be performed at any time by restarting the module.

A power-up self-test failure can only be cleared by a successful FIPS_mode_set invocation.

2.4 Mitigation of Other Attacks

The Module does not contain additional security mechanisms beyond the requirements for FIPS 140-2
level 1 cryptographic modules.

2.5 Physical Security

The Module is comprised of software only and thus does not claim any physical security.

3 The FIPS_mode_set() function could be re-invoked but such re-invocation does not provide a means from recovering
from an integrity test or known answer test failure.

Page 9 of 13

OpenSSL FIPS 140-2 Security Policy

3. Secure Operation

The tested operating systems segregate user processes into separate process spaces. Each process space
is an independent virtual memory area that is logically separated from all other processes by the
operating system software and hardware. The Module functions entirely within the process space of
the process that invokes it, and thus satisfies the FIPS 140-2 requirement for a single user mode of
operation. The "single user mode" means that for each spawned instance of a cryptographic module,
only one operator may access the module at a time.

The Module is installed using the instructions in Appendix A appropriate to the target system. A
complete revision history of the source code from which the Module was generated is maintained in a
version control database®.

Upon initialization of the Module by invocation of the FIPS_mode_set call the module will run its
power-up self tests. Successful completion of the power-up self tests as indicated by a return value of
“1” from the FIPS_mode_set call ensures that the module is operating in the FIPS mode of operation.

The self-tests can be called on demand by restarting the module (i.e., reloading the module and re-
invoking the FIPS mode initialization API call).

4 See http://cvs.openssl.org/

Page 10 of 13

http://cvs.openssl.org/

OpenSSL FIPS 140-2 Security Policy

4. Cryptographic Key Management

For each API call the calling application provides public and private keys (if any) specified in the API
call.

4.1 Key Generation

The Module supports generation of DH, DSA, and RSA public-private key pairs. The Module employs
an ANSI X9.31 compliant random number generator for creation of asymmetric and symmetric keys
as well as FIPS 186-2 compliant DSA key pair generation algorithm.

4.2 Key Storage

Public and private keys are provided to the Module by the calling process, and are destroyed when
released by the appropriate API function calls. The Module does not perform persistent storage of
keys.

4.3 Key Access
An authorized application as user (the User) has access to all key data generated during the operation of
the Module.

4.4 Key Protection and Zeroization

Keys residing in internally allocated data structures can only be accessed using the Module defined
API. The operating system protects memory and process space from unauthorized access.

Only the process that creates or imports keys can use or export them. No persistent storage of key data
is performed by the Module. All API functions are executed by the invoking process in a non-
overlapping sequence such that no two API functions will execute concurrently.

Rebooting of the system will zeroize any keys present in volatile RAM.

4.5 Cryptographic Algorithms
The Module supports the following FIPS approved or allowed algorithms:

Algorithm Validation Certificate Usage

AES #681, #682 encrypt/decrypt

TDES #623, #624 encrypt/decrypt
Diffie-Hellman (allowed in FIPS mode, see | DH primitives

caveat below)

DSA #257, #258 sign and verify

PRNG #397, #398 random number generation
RSA (X9.31, PKCS #1.5, PSS) |#318, #319 sign and verify

Page 11 of 13

OpenSSL FIPS 140-2 Security Policy

Algorithm Validation Certificate Usage
RSA encrypt/decrypt (allowed in FIPS mode, see | key wrapping
caveat below)
SHA-1 #711, #712 hashing
SHA-224 #711, #712 hashing
SHA-256 #T11, #712 hashing
SHA-384 #711,#712 hashing
SHA-512 #711, #712 hashing
HMAC-SHA-1 #362, #363 message integrity
HMAC-SHA224 #362, #363 message integrity
HMAC-SHA256 #362, #363 message integrity
HMAC-SHA384 #362, #363 message integrity
HMAC-SHAS512 #362, #363 message integrity
Table 4.5a

Diffie-Hellman (provides between 80 and 256 bits of encryption strength).
Diffie-Hellman, DSA, and RSA do not permit a key size of less than 1024 bits when in FIPS mode.

RSA (key wrapping; key establishment methodology provides between 80 and 150 bits of encryption
strength).

The module supports the DES encryption algorithm, which shall not be used in the Approved mode of
operation.

Page 12 of 13

OpenSSL FIPS 140-2 Security Policy

Appendix A Installation Instructions

Installation consists of copying the shared library file to the appropriate location where it can be
referenced by the host operating system at application runtime.

For Unix and Linux systems the shared library file is named libfips.s0.0.9.8. For Microsoft Windows
the shared library file is named libosslfips.dll.

Installation instructions:
1. Copy the shared library file to the appropriate location on the host system.

2. As appropriate define or register the shared library for reference by the operating system (O/S)
run-time loader. This step will vary depending on the O/S and whether the shared library is to
be installed for global access by all users or only for use by a specific application. For
Windows simply placing the shared library in the same directory as the calling application
suffices for use by that application. For Unix/Linux the LD_LIBRARY_PATH environment
variable (or possibly others such as LD_PRELOAD) can be defined, or the ldconfig command
can be used to configure the system-wide cache of shared libraries listed in the /etc/ld.so.conf
file.

3. The module is now available for use.

Page 13 of 13

	1.	Introduction
	Untitled
	2.	Module Specification
	2.1	Roles and Services
	2.2	Ports and Interfaces
	2.3	Self Tests
	2.4	Mitigation of Other Attacks
	2.5	Physical Security

	3.	Secure Operation
	4.	Cryptographic Key Management
	4.1	Key Generation
	4.2	Key Storage
	4.3	Key Access
	4.4	Key Protection and Zeroization
	4.5 	Cryptographic Algorithms

	Appendix A	Installation Instructions

