
This document may be freely reproduced and distributed in its entirety without modification.

1

Titaniam, Inc.

Titaniam Core Engine

FIPS 140-2 Non-Proprietary

Security Policy

Document Version 1.0

Module Version 1.0

Revision Date 04/18/2022

Author Date Change

Titaniam 05/04/2021 Initial Release

Titaniam 06/08/2021 Updated certificate number

Titaniam 03/07/2022 NIST Comments

Titaniam 04/18/2022 NIST Comments

This document may be freely reproduced and distributed in its entirety without modification.

2

Table of Contents

1. Introduction 3

2. Logical and Physical Cryptographic Boundaries 4

2.1 Logical Cryptographic Boundary 4

2.2 Physical Boundary 5

2.3 Modes of Operation 7

2.4 Module Configuration 7

3. Cryptographic Functionality 7

3.1 Critical Security Parameters 8

4. Roles, Authentication and Services 9

4.1 Assumption of Roles 9

4.2 Services 10

4.3 Self-tests 11

4.4 Physical Security Policy 12

4.5 Operational Environment 12

5. Mitigation of Other Attacks Policy 12

6. Security Rules and Guidance 13

6.1 Basic Enforcement 13

6.2 Basic Guidance 14

This document may be freely reproduced and distributed in its entirety without modification.

3

1. Introduction

This document defines the Security Policy for the Titaniam Core Engine FIPS Cryptographic

Module, hereafter denoted the Module. The Module provides a cryptographic library. The

Module meets The Cryptographic Module meets FIPS 140-2 overall Level 1 and Level 3 for

Area 1, Cryptographic Module Specification; Area 8, EMI/EMC; and Area 10, Design Assurance.

The software version of the Cryptographic Module is 1.0.

The cryptographic module was tested on the following operational environment on the general

purpose computer (GPC) platform detailed below:

The cryptographic Module was Tested in the following Environment

● Physical Hardware:

○ PowerEdge T40 Server, Intel(R) Xeon(R) E-2224G CPU @ 3.50GHz

● Operating system:

○ Ubuntu 18.04.5 LTS

● Java Version:

○ Openjdk version "11.0.11"

As per FIPS 140-2 Implementation Guidance G.5, the Cryptographic Module will remain

compliant with the FIPS 140-2 validation when operating on any general purpose computer

(GPC) provided that:

1. No source code has been modified.

2. The GPC uses the specified single-user platform

The Cryptographic Module is intended for use by US Federal agencies and other markets that

require a FIPS 140-2 validated Cryptographic Library. The Module is a software-only

embodiment; the cryptographic boundary is the Java Archive (JAR) file.

The FIPS 140-2 security levels for the Module are given in Table 1 as follows:

Table 1: Security Level of Security Requirements

Security Requirement Security Level

Cryptographic Module Specification Level 3

Cryptographic Module Ports and Interfaces Level 1

Roles, Services, and Authentication Level 1

Finite State Model Level 1

This document may be freely reproduced and distributed in its entirety without modification.

4

Physical Security N/A

Operational Environment Level 1

Cryptographic Key Management Level 1

EMI/EMC Level 3

Self-Tests Level 1

Design Assurance Level 3

Mitigation of Other Attacks N/A

2. Logical and Physical Cryptographic Boundaries

2.1 Logical Cryptographic Boundary

The executable for the Module is: titaniam-engine.jar (/lib/titaniam-engine.jar). This module is

the only software component within the Logical Cryptographic Boundary and the only software

component that carries out cryptographic functions covered by FIPS 140-2.

Figure 1 shows the logical relationship of the cryptographic module to the other software and

hardware components of the computer. The Titaniam classes are executed on the Java Virtual

Machine (JVM) using the classes of the Java Runtime Environment (JRE). The JVM is the

interface to the computer’s Operating System (OS) that is the interface to the various physical

components of the computer. The physical components of the computer are discussed further in

Section 6. Abbreviations introduced in Figure 1 that describe physical components are: Central

Processing Unit (CPU), Dynamic Random Access Memory (DRAM) and Input Output (I/O).

This document may be freely reproduced and distributed in its entirety without modification.

5

2.2 Physical Boundary

The Titaniam Core Engine Module runs on a General Purpose Computer (GPC). The Physical

Cryptographic Boundary for the module is the case of that computer. Figure 2 shows a block

diagram of the physical components of a typical GPC and the ports or interfaces across the

Physical Cryptographic Boundary.

All the physical components are standard electronic components; there are not any custom

integrated circuits or components dedicated to FIPS 140-2 related functions.

Abbreviations introduced in Figure 2 are: Basic I/O System (BIOS), Integrated Device

Electronics (IDE), Institute of Electrical and Electronic Engineers (IEEE), Instruction Set

Architecture (ISA), Peripheral Component Interconnect (PCI), Universal Asynchronous

Receiver/Transmitter (UART) and Universal Serial Bus (USB). Input or output ports are

designated by arrows with single heads, while I/O ports are indicated by bidirectional

Arrows.

Titaniam Core Engine Classes

 E.g.
com.titaniam..

Cryptographic
Module

engine-1.0.jar

Logical
Cryptographic
Boundary

JVM JRE

OS

CPU I/O

NETWOR PERIPHERAL

HARD

DRAM

CACHE

Figure 1 - Block Diagram of Software for Titaniam Core Engine

This document may be freely reproduced and distributed in its entirety without modification.

6

Figure 2 - Block Diagram of the Physical Components of a typical GPC

For FIPS 140-2 purposes, the Titaniam Core Engine Module is defined as a “multi-chip

standalone module”, therefore, the module’s physical ports or interfaces are defined as those for

the hardware of the GPC. These physical ports are separated into the logical interfaces defined

by FIPS 140-2, as shown in Table 3.

The Titaniam Core Engine Module is a software-only module, and, therefore, control of the

physical ports is outside of the module’s scope. The module does provide a set of logical

interfaces which are mapped to the following FIPS 140-2 defined logical interfaces: data input,

data output, control input, status output, and power. When the module performs self-tests, if it

gets into an error state, or if it is generating keys, or if it is performing zeroization, the module

prevents all output on the logical data output interface as only the thread performing the

This document may be freely reproduced and distributed in its entirety without modification.

7

operation has access to the data. The module in an error state, does not return any output data,

only an error value.

Table 3: Logical Interfaces

FIPS 140-2 Logical
Interface

Module Equivalent

Data Input API input parameters – plaintext and/or ciphertext data.

Data Output API output parameters and return values – plaintext and/or ciphertext
data

Control Input API method calls – method calls, or input parameters, that specify
commands and/or control data used to control the operation of the
module.

Status Output API output parameters and return/error codes that provide status
information used to indicate the state of the module.

2.3 Modes of Operation

There will be two modes of operation: Approved and Non-approved. The module will be in FIPS-

approved mode when the appropriate factory is called. To verify that a module is in the

Approved Mode of operation, the user can call a FIPS-approved mode status method

(FipsModeIndicator.isFipsMode()). If the module is configured to allow approved and

non-approved mode operation, setting the following JVM system property - -

Dtitaniam.fips-approved=true and restarting it will switch to approved mode.

In FIPS-approved mode, the module will not provide non-approved algorithms, therefore,

exceptions will be called if the user tries to access non-approved algorithms in the Approved

Mode.

2.4 Module Configuration

In default operation the module will start with both approved and non-approved mode enabled.

If the module detects that the system property titaniam.fips-approved is set to true the

module will start in approved mode and non-approved mode functionality will not be available.

This document may be freely reproduced and distributed in its entirety without modification.

8

3. Cryptographic Functionality

The Module implements the FIPS Approved and Non-Approved but Allowed cryptographic

functions listed in Table 5 to Table 7, below.

Table 5 – Approved and CAVP Validated Cryptographic Functions

CAVP Cert Algorithm Standard Mode/
Method

Key
Lengths,
Curves or
Moduli

Use

A1388 AES FIPS 197, SP
800-38A

CBC, ECB 128, 256 Data
Encryption/
Decryption

A1491 AES-FF1 SP 800-38G 128,192,256 Data
Encryption/
Decryption

A1491 SHS FIPS 180-4 SHA-256 Digital
Signature
Verification

A1491 HMAC FIPS 198-1 128 Message
Authenticatio
n

A1491 KBKDF SP 800-108 Field Key
Derivation

Table 6 – Non-Approved Cryptographic Functions for use in non-FIPS mode only

Algorithm Description

Coded Keyword Encryption/Decryption of texts

Coded Integer Encryption/Decryption of integers

Coded Date Encryption/Decryption of Date

Coded IP Encryption/Decryption of IP addresses

This document may be freely reproduced and distributed in its entirety without modification.

9

3.1 Critical Security Parameters

All CSPs used by the Cryptographic Module are described in this section in Table 7.

Table 7 – Critical Security Parameters (CSPs)

CSP Name Description/Usage Generation/Storage Zeroization

Key
Encryption
Key

Used to decrypt the
Seed Key

Generation: N/A
(Generated by the
operator)
Storage: RAM

Module will actively
overwrite this CSP once
no longer needed;
Zeroized when the
module is powered off.

Seed Key Used to generate
Field Level Keys

Generation: N/A
(Generated by the
operator)
Storage: RAM

Module will actively
overwrite this CSP once
no longer needed;
Zeroized when the
module is powered off.

SP800-108
KDF Internal
State

Used during Field
Level Key
Generation

Generation: SP800-108
KDF
Storage: RAM

Module will actively
overwrite this CSP upon
exiting the function.

Field Level
Key (Java)

Usage: AES-CBC,
AES-ECB
[FIPS-197, SP 800-
56C, SP 800-38D,
Addendum to SP
800-38A] AES
(128/192/256)
encrypt key1

Establishment: SP800-
108 KDF
Storage: RAM

Module will actively
overwrite this CSP once
no longer needed;
Zeroized when the
module is powered off.

Field Level
Key
(Idealista)

Usage: AES-FF1
[FIPS-197, SP 800-
56C, SP 800-38D,
Addendum to SP
800-38A]

Establishment: SP800-
108 KDF
Storage: RAM

Module will actively
overwrite this CSP once
no longer needed;
Zeroized when the
module is powered off.

HMAC Key Usage: HMAC
[FIPS-197, SP 800-
56C, SP 800-38D,
Addendum to SP
800-38A]

Establishment: SP800-
108 KDF
Storage: RAM

Module will actively
overwrite this CSP once
no longer needed;
Zeroized when the
module is powered off.

IntegrityChec
ker Key

Usage: Power up
self-tests

Generation: N/A
(Externally generated and
hardcoded in the module)

N/A

1

This document may be freely reproduced and distributed in its entirety without modification.

10

Storage: RAM

4. Roles, Authentication and Services

4.1 Assumption of Roles

The module supports two distinct operator roles, User and Cryptographic Officer (CO). The

cryptographic module implicitly maps the two roles to the services. A user is considered the

owner of the thread that instantiates the module.

Table 8 lists all operator roles supported by the module. The module does not support a

maintenance role and/or bypass capability. The module does not support authentication.

Table 8 – Roles Description

Role ID Role Description Authentication Type

CO Cryptographic Officer – Powers on
and off the module. Installs
cryptographic keys.

N/A – Authentication not
required for Level 1

User User – The user of the complete
API.

N/A – Authentication not
required for Level 1

4.2 Services

All services implemented by the Module are listed in Table 8 below and Table 9 describes all

usage of CSPs by the service.

Table 8 lists the services. The second column provides a description of each service and

availability to the Cryptographic Officer and User, in columns 3 and 4, respectively.

Table 8 – Services

Service Description CO User

Initialize Module and
Run Self-Tests on
Demand

The JRE will initialize CryptoModule that will call for
self-tests on module initialization.

X

Show Status A user can call FipsModeIndicator.isReady() at any X

This document may be freely reproduced and distributed in its entirety without modification.

11

time to determine if the module is ready.
FipsModeIndicator.isFipsMode() can be called to
determine the FIPS mode of operation.

Zeroize / Power-off All CSPs are zeroized upon the shutdown of the
module.

 X

Data Encryption Used to encrypt data. X

Data Decryption Used to decrypt data. X

Keyed Message
Hashing

Used to calculate data integrity codes with HMAC-
SHA-256.

 X

SP 800-108 KDF (secret input) (outputs secret) Used to calculate a
value suitable to be used for a secret key from an
input secret and additional input.

 X

Table 9 defines the relationship between access to CSPs and the different module services.

The modes of access shown in the table are defined as:

● G = Generate: The module generates the CSP.

● R = Read: The module reads the CSP. The read access is typically performed before the

module uses the CSP.

● E = Execute: The module executes using the CSP.

● W = Write: The module writes the CSP. The write access is typically performed after a

CSP is imported into the module, when the module generates a CSP, or when the

module overwrites an existing CSP.

● Z = Zeroize: The module zeroizes the CSP

Table 9: CSP Access Rights within Services

Service Seed
Key

Key
Encrypti
on Key

Field
Level
Key
(Java)

Field
Level
Key
(Idealista
)

HMAC
Key

SP800-
108 KDF
Internal
State

Integrity
Checker
Key

Initialize
Module
and Run
Self-
Tests on
Demand

R R R,W R,W R,W Z R, X

Show
Status

 R R R

This document may be freely reproduced and distributed in its entirety without modification.

12

Zeroize /
Power-off

Z Z Z Z Z Z

Data
Encryptio
n

R R,W,X R,W,X

Data
Decryptio
n

R R,W,X R,W,X

Keyed
Message
Hashing

R R,W,X

4.3 Self-tests

Each time the module is powered up, it tests that the cryptographic algorithms still operate

correctly and that sensitive data has not been damaged. Power-up self–tests are available on

demand by power cycling the module.

On power-up or reset, the module performs the self-tests that are described in Table 14 below.

All KATs must be completed successfully prior to any other use of cryptography by the Module.

If one of the KATs fails, the module enters the error state. The module will output a detailed

error message when FipsModeIndicator.errorCode() is called. The error state can only be

cleared by reloading the module and calling FipsModeIndicator.isReady() again to confirm

successful completion of the KATs.

Table 10 – Power Up Self-tests

Test Target Description

Software Integrity HMAC-SHA-256

AES KATs: Encryption, Decryption
Modes: CBC, ECB
Key sizes: 128 bits

AES-FF1 KATs: Encryption, Decryption
Key sizes: 128 bits

HMAC-SHA-256 KATs: Output verification
SHA sizes: SHA-256

SHA KATs: Output verification
SHA sizes: SHA-256

KBKDF KATs: Output verification

This document may be freely reproduced and distributed in its entirety without modification.

13

4.4 Physical Security Policy

Physical Security
Mechanisms

Recommended Frequency
of Inspection/Test

Inspection/Test Guidance
Details

N/A N/A N/A

4.5 Operational Environment

The module operates in a modifiable operational environment under the FIPS 140-2 definitions.

The module runs on a GPC running one of the operating systems specified in the approved

operational environment list. Each approved operating system manages processes and threads

in a logically separated manner. The Module’s user is considered the owner of the calling

application that instantiates the Module within the process space of the Java Virtual Machine.

5. Mitigation of Other Attacks Policy

Other Attacks Mitigation Mechanism Specific Limitations

N/A N/A N/A

6. Security Rules and Guidance

6.1 Basic Enforcement

The module design corresponds to the Module security rules. This section documents the

security rules enforced by the cryptographic module to implement the security requirements of

this FIPS 140-2 Level 1,2 and 3 module.

1. The module shall provide two distinct operator roles: User and Cryptographic Officer.

2. The module does not provide authentication.

3. The operator shall be capable of commanding the module to perform the power up self-

tests by cycling power or resetting the module.

This document may be freely reproduced and distributed in its entirety without modification.

14

4. Power up self-tests do not require any operator action.

5. Data output shall be inhibited during key generation, self-tests, zeroization, and error

states.

6. Status information does not contain CSPs or sensitive data that if misused could lead to

a compromise of the module.

7. There are no restrictions on which keys or CSPs are zeroized by the zeroization service.

8. The module supports single user.

9. The module does not have any external input/output devices used for entry/output of

data.

10. The module does not enter or output plaintext CSPs from the module’s physical

boundary.

11. The module does not output intermediate key values.

12. The module does not allow concurrent operators.

6.2 Basic Guidance

The jar file representing the module needs to be installed in a JVM's classpath in a manner

appropriate to its use in applications running on the JVM.

Functionality in the module is provided by the distinct classes that provide access to the FIPS

approved and non-FIPS approved services provided by the module.

When the module is being used in FIPS approved-only mode, classes providing

implementations of algorithms which are not FIPS approved, or allowed, are explicitly disabled.

7. EMI/EMC

The cryptographic module conforms to the EMI/EMC requirements specified by 47 Code of

Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class B.

