

 crypto
Software version: v1.3

FIPS 140-2 Non-Proprietary
Security Policy

Revision History

History Contents Date Writer Approver

[KS_A1]Non-Proprietary
Security Policy v1.3.0

Initial registration 2018.07.31 sjpark hwpark

[KS_A1]Non-Proprietary
Security Policy v1.3.1

Responds to First comments
from CSTLab

2019.04.15 sjpark hwpark

[KS_A1]Non-Proprietary
Security Policy v1.3.2

Responds to Second
comments from CSTLab

2019.04.17 sjpark hwpark

[KS_A1]Non-Proprietary
Security Policy v1.3.3

Responds to Third comments
from CSTLab

2019.07.29 sjpark hwpark

[KS_A1]Non-Proprietary
Security Policy v1.3.4

Responds to First comments
from CMVP

2020.04.27 sjpark ikkang

[KS_A1]Non-Proprietary
Security Policy v1.3.5

Change the description
within table 5

2020.05.20 sjpark ikkang

[KS_A1]Non-Proprietary
Security Policy v1.3.6

Additional updates for CMVP
comments

2020.05.22 sjpark ikkang

[KS_A1]Non-Proprietary
Security Policy v1.3.7

Change the version
information display of the title

part
2020.06.17 sjpark ikkang

Table of Contents

1. Cryptographic Module Specification .. 4
2. Ports and Interfaces .. 5
3. Modes of Operation and Cryptographic Functionality ... 7

3.1 Critical Security Parameters and Public Keys ... 9
4. Roles, Authentication, and Services .. 10

4.1 Roles and Services .. 10
4.2 Authentication .. 12

5. Self-Tests ... 12
5.1 Power-Up Self-Tests .. 12
5.2 Conditional Tests .. 14

6. Operational Environment ... 15
6.1 General Purpose Computer ... 15
6.1.1 Test Environment ... 15
6.2 General Purpose Operating System .. 15

7. Security Rules ... 16
8. Mitigation of Other Attacks .. 16
9. Installation and Instantiation .. 16

Copyright(c) Raonsecure Co., Ltd. This document may be freely reproduced and distributed whole and

intact including this copyright notice. 4

1. Cryptographic Module Specification

This document is the non-proprietary security policy for Raonsecure Key# crypto Cryptographic
Module, hereinafter called the “Cryptographic Module” or “Module”.

This Cryptographic Module was created in a C-based dynamic library format and is supported by
Microsoft Windows. It is a multi-chip standalone module embodiment and is composed as a pure
software-only library.

The Cryptographic Module reference is as follows.

Cryptographic Module Identification Key# crypto
Version v1.3

Components KeySharpCryptoFips.dll
Developer RaonSecure Co., Ltd.

Table 1 Cryptographic Module reference

The Cryptographic Module complies with overall security level 1 of the FIPS 140-2 standard. The
security level is as follows.

Security Requirement Security Level
Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1
Roles, Services, and Authentication 1

Finite State Model 1
Physical Security N/A

Operational Environment 1
Cryptographic Key Management 1

EMI/EMC 3
Self-Tests 1

Design Assurance 1
Mitigation of Other Attacks N/A

Table 2 Security Levels per FIPS 140-2 Area

Copyright(c) Raonsecure Co., Ltd. This document may be freely reproduced and distributed whole and

intact including this copyright notice. 5

The block diagram and data flow of this Cryptographic Module are as follows.

Figure 1 Module Block Diagram

The Cryptographic Module performs no communications other than with the calling application (the
process that invokes the Cryptographic Module services via the API).

2. Ports and Interfaces

The physical ports of the Cryptographic Module are the same as the general purpose computer (GPC)
on which it is executed. The logical interface is a C-language application program interface (API).

Logical Interface Type Module Mapping
Data input Parameters passed to the Cryptographic Module via API calls

Data output Data returned from the Cryptographic Module via API calls
Control input API Calls and/or parameters passed to API calls
Status output Information received in response to API calls

Power N/A
Table 3 Logical Interface Mapping

Figure 2 shows an example of the information flow for the API (C language) data input and output,
control input, and status output. For example, if the application attempts to calculate the HMAC value,
the application calls the HMAC API, KFC_HMAC.

At this time, the API call from the application program is sent to the Cryptographic Module through the
control input interface and the Cryptographic Module receives control input to perform the HMAC

Copyright(c) Raonsecure Co., Ltd. This document may be freely reproduced and distributed whole and

intact including this copyright notice. 6

computation. Also, the Cryptographic Module receives data input like a message (input in the figure),
length of a message (inputLength), a secret key for HMAC (key), secret-key length (keyLength), and
HMAC algorithm ID (macID).

The Cryptographic Module performs HMAC computations after receiving control/data input, and the
success/failure of the computation is returned in the application. When the cryptographic operation is
successful, the HMAC value (mac) and HMAC length (macLen) is returned to the application through
the data output interface.

Figure 1: Logical interface of KFC_HMAC and relationship with the application

As a software module, control of the physical ports is outside the Cryptographic Module scope.
However, when the Cryptographic Module is performing self-tests, or is in an error state, all output on
the logical data output interface is inhibited. The Cryptographic Module is single-threaded and in error
scenarios only error values are returned. (no data output is returned).

Copyright(c) Raonsecure Co., Ltd. This document may be freely reproduced and distributed whole and

intact including this copyright notice. 7

3. Modes of Operation and Cryptographic
Functionality

This Cryptographic Module is designed to support both a FIPS Approved mode of operation and a
non-FIPS Approved mode of operation. The mode of operation differs based on the algorithm
identifier entered in a single function via an API call.

Algorithms subject to the FIPS Approved mode of operation provided by this Cryptographic Module
are described in Tables 4 and 5. Table 6 lists the algorithms which are specific to the non-Approved
mode of operation and these shall not be used when operating in the FIPS Approved mode of
operation.

Function
Algorith

m
Options

Standard
Cert

Random number
generation &

Symmetric key gen
eration

DRBG
Hash: SHA2-256
Prediction resistance not supported

SP800-
90A

#C739

Encryption &
Decryption

AES

ECB, CBC, CFB8, CFB128 and OFB:
Modes: Decrypt, Encrypt
Key Lengths: 128, 192, 256 (bits)

CTR:
Counter Source: External
Modes: Encrypt
Key Lengths: 128, 192, 256 (bits)

FIPS 197 #C739

Message digest
(HASH)

SHA SHA-1, SHA-256, SHA-384 and SHA-512 FIPS 180-4 #C739

Keyed hash
(HMAC)

HMAC
HMAC-SHA-1, HMAC-SHA2-256, HMAC-
SHA2-384 and HMAC-SHA2-512

FIPS 198-1 #C739

Digital Signature &
Asymmetric Key Ge

neration

RSA

Key Gen (2048/3072)
Sig GenPKCS1.5 (2048/3072 with SHA2-
256, SHA2-384, SHA2-512)
Sig VerPKCS1.5 (2048/3072 with SHA2-
256, SHA2-384, SHA2-512)
Sig GenPSS (2048/3072 with SHA2-256,
SHA2-384, SHA2-512)
Sig VerPSS (2048/3072 with SHA2-256,
SHA2-384, SHA2-512)

FIPS 186-4 #C739

ECDSA

PKG: P-256
PKV: P-256
Sig Gen: P-256 with SHA2-256, SHA2-
384, SHA2-512
Sig Ver: P-256 with SHA2-256, SHA2-
384, SHA2-512

FIPS 186-4 #C739

Key Generation CKG The module uses SP800-133 key SP800-133 Vendor

Copyright(c) Raonsecure Co., Ltd. This document may be freely reproduced and distributed whole and

intact including this copyright notice. 8

generation method using unmodified
output from the Hash DRBG

Affirmed

Table 4 FIPS Approved Algorithms

This Cryptographic Module supports the following non-Approved but Allowed functions:

Function Algorithm Description Standard

RSA
(key transport; key

establishment
methodology

provides between
112 and 128 bits of
encryption strength)

RSA

Used by the calling application for
encryption or decryption of keys. No CSPs
are established into or exported out of the
Cryptographic Module using these services.

PKCS#1: RSA
Cryptography

Standard

Entropy source NDRNG Used only to seed the Approved DRBG

Table 5 Non-FIPS Approved but Allowed Cryptographic Functions

Function Algorithm Options Standard

Encryption &
Decryption

ARIA
(non-compliant)

ECB, CBC, CFB8, CFB128 and OFB :
Modes: Decrypt, Encrypt
Key Lengths: 128, 192, 256 (bits)

CTR: Counter Source: External
Key Lengths: 128, 192, 256 (bits)

KS X 1213-
1(2009)

SEED
(non-compliant)

ECB, CBC, CFB8, CFB128 and OFB :
Modes: Decrypt, Encrypt
Key Lengths: 128, 256 (bits)

CTR: Counter Source: External
Key Lengths: 128, 192, 256 (bits)

TTAS. KO-
12.0004/R1(20

05)

LEA
(non-compliant)

ECB, CBC, CFB8, CFB128 and OFB:
Modes: Decrypt, Encrypt
Key Lengths: 128, 192, 256 (bits)

CTR: Counter Source: External
Key Lengths: 128, 192, 256 (bits)

TTAK.KO-
12.0223(2013)

Message Digest
(HASH)

HAS
(non-compliant)

160
TTAS.KO-

12.0011/R2
Keyed Hash

(HMAC)
HMAC

(non-compliant)
HAS-160 FIPS 198-1

Digital Signature
&

Asymmetric Key
 Generation

RSA

Non-compliant
SigGen-PKCS1.5, SigGenPSS, SigVer-
PKCS1.5, SigVerPSS (2048/3072 with
SHA-1)

FIPS 186-4

KCDSA
(non-compliant)

PQG Gen
Key Pair Gen, Sig Gen, Sig Ver when

TTAS, KO-
12.000/R1

Copyright(c) Raonsecure Co., Ltd. This document may be freely reproduced and distributed whole and

intact including this copyright notice. 9

using:

- TTAK.KO-12.0001_R4 RNG

- 1024 bit key size with HAS160
 - 2048 bit key size with SHA-256

Table 6 Non-Approved Algorithms (Non-Approved Mode Only)

3.1 Critical Security Parameters and Public Keys

This part explains all CSPs used in the Cryptographic Module. All access to CSPs through module
services is explained in Section 4.

CSPs Description

RSA SGK RSA (2048 and 3072 bits) signature generation key
RSA KDK RSA (2048 and 3072 bits) key decryption key

ECDSA SGK ECDSA (P-256) signature generation key
AES EDK AES (128 / 192 / 256) encrypt / decrypt key

HMAC Key Keyed hash key (160 / 256 / 384 / 512)

Hash_DRBG
V (440 / 888 bits) and C (440 / 888 bits)
entropy input (length dependent on security strength)

Table 7 Critical Security Parameters

Key Name Description
RSA SVK RSA (2048 and 3072 bits) signature verification public key
RSA KEK RSA (2048 and 3072 bits) key encryption key

ECDSA SVK ECDSA (P-256) signature verification key
Table 8 Public Keys

For all CSPs and Public Keys:

Random Number Generation - The module employs an Approved SP 800-90A Hash_DRBG for the
creation of random numbers. The DRBG is instantiated during module initialization and the module
loads the DRBG using the Hash_DRBG mechanism with SHA2-256 and derivation function without
prediction resistance.

The Cryptographic Module uses the Windows Random Number Generator (RNG) as the entropy
source for seeding the DRBG. The entropy is provided by the operational environment using the
Microsoft CNG (Cryptography, Next Generation) API via a BCryptGenRandom function call from the
Windows 10 bcrypt.dll library, which is within the module’s physical boundary but outside the module’s
logical boundary. The Windows entropy source provides at least 112 bits of entropy to the DRBG
during initialization (seed) and reseeding (reseed).

The Cryptographic Module performs a continuous self-test on the output of Windows RNG to ensure
that consecutive random numbers do not repeat. Also, the module performs the DRBG health tests as
defined in section 11.3 of [SP800-90A]

Copyright(c) Raonsecure Co., Ltd. This document may be freely reproduced and distributed whole and

intact including this copyright notice. 10

Storage - RAM, is associated to entities by memory location. The Cryptographic Module stores
DRBG state values for the lifetime of the DRBG instance. The Cryptographic Module uses CSPs
passed in by the calling application on the stack. The Cryptographic Module does not store any CSP
persistently (beyond the lifetime of an API call), with the exception of DRBG state values used for the
Cryptographic Module’s key generation service.

Generation - The cryptographic module implements a NIST SP 800-133 key generation function
using a NIST SP 800-90A compliant DRBG for the generation of symmetric keys and asymmetric
ECDSA and RSA keys, as shown in the table of CSPs above. The calling application is responsible
for storage of generated keys returned by the cryptographic module

Key Entry - All CSPs enter the Cryptographic Module’s logical boundary in plaintext as API
parameters, associated by memory location. However, none cross the physical boundary.

Output - The Cryptographic Module does not output CSPs, other than as explicit results of key
generation services. However, none cross the physical boundary.

Zeroization - Zeroization of sensitive data is performed automatically by API function calls for
temporarily stored CSPs. In addition, the Cryptographic Module provides a function called
KSC_CM_StateFinal to explicitly destroy CSPs related to random number generation services. The
calling application is responsible for parameters passed in and out of the Cryptographic Module.

CSPs, like a secret key or private key, exists only between the start of the operation function call and
function call returns, and when the function call returns, zeroization is automatically performed. The
method for zeroizing the CSP is to set the memory space as a 0 value, by using the memset function
provided by C language.

4. Roles, Authentication, and Services
4.1 Roles and Services
There are two roles used in this Cryptographic Module – The User Role and the Crypto-Officer Role.
The roles are logically separated according to the performed services.

The details of each role are explained as follows:

 User Role(User): This refers to the entities that can access all services offered by the
module. The role of the user is to summon API calls offered by this Cryptographic Module to
use the service.

 Crypto-Officer Role(CO): This is the entity for installing the Cryptographic Module and setup
the operating system in a secure manner. The Crypto-Officer role also has access to the
services provided by the module. The Crypto-Officer has the same access to services
available to the User, but the Crypto-Officer does not have the authority to access keys or
data.

The roles of Crypto-Officer and User are implicitly assumed as the Cryptographic Module provides no
authentication. The services offered by this Cryptographic Module can be categorized per role as
follows.

Copyright(c) Raonsecure Co., Ltd. This document may be freely reproduced and distributed whole and

intact including this copyright notice. 11

Role Service Details
CO Initialize Module initialization. Does not access CSPs.

CO Self-test Perform self-tests. Does not access CSPs.

CO Show status
Functions that provide module status information:
Does not access CSPs.

CO Zeroize Functions that destroy Hash_DRBG CSP.

CO,User
Random number

 generation
Used for random number and symmetric key generation.

 Uses and updates Hash_DRBG CSP.

CO,User
Symmetric Key

Generation
Used to generate AES keys using the Approved DRBG

CO,User
Asymmetric

key generation
Used to generate ECDSA and RSA keys:
RSA SGK, RSA SVK; ECDSA SGK, ECDSA SVK

CO,User
Symmetric encryp

t/decrypt
Used to encrypt or decrypt data (passed in by the calling
process).

CO,User
Message Digest

(HASH)
Used to generate a SHA-1 or SHA-2 message digest.
Does not access CSPs.

CO,User Keyed Hash
Used to generate or verify data integrity with HMAC.
Executes using HMAC Key (passed in by the calling process).

CO,User Key transport

Used to encrypt or decrypt a key value on behalf of the calling pr
ocess (does not establish keys into the module).
Executes using RSA KDK, RSA KEK (passed in by the calling pro
cess).

CO,User
Digital

signature

Used to generate or verify RSA, or ECDSA digital signatures.
Executes using RSA SGK, RSA SVK; ECDSA
SGK, ECDSA SVK (passed in by the calling process)

Table 9 Services and CSP Access

The Cryptographic Module interface per service is as follows.

Service Function

Initialize KFC_CM_StateInit

Zeroize KFC_CM_StateFinal

Change Status KFC_CM_StateChange

Show Status KFC_CM_StateInfo

Get Version KFC_CM_Version

Get ErrorString KFC_CM_ErrorString

Self-test KFC_CM_SelfTest

Symmetric Key Generation KFC_KEY_GenSecKey
Asymmetric

key generation
KFC_KEY_GenKeyPair
KFC_KEY_CheckKeyPair

Symmetric encrypt/decrypt
(AES CTR only supports symmetric encrypt)

KFC_SYM_Encrypt
KFC_SYM_Encrypt_Init
KFC_SYM_Encrypt_Update
KFC_SYM_Encrypt_Final

Copyright(c) Raonsecure Co., Ltd. This document may be freely reproduced and distributed whole and

intact including this copyright notice. 12

KFC_SYM_Decrypt
KFC_SYM_Decrypt_Init
KFC_SYM_Decrypt_Update
KFC_SYM_Decrypt_Final

Digital
signature

KFC_ASYM_GenParam
KFC_ASYM_Sign
KFC_ASYM_Verify

Key transport
KFC_ASYM_Enrypt
KFC_ASYM_Decrypt

Keyed Hash

KFC_HMAC
KFC_HMAC_Init
KFC_HMAC_Update
KFC_HMAC_Final

Message Digest

KFC_Hash
KFC_Hash_Init
KFC_Hash_Update
KFC_Hash_Final

Random number generation KFC_Rand
Table 10 API Calls by Service

The Cryptographic Module defines CSPs in chapter 3.1. A number of the service APIs are for
functions that perform cryptographic operations. Some of these accept CSPs (like a secret or private
key) as parameters. There are also APIs for functions that generate keys and pass them back to the
calling application. These CSPs are ephemeral and are not stored within the Cryptographic Module.
After these CSPs have been used by the API functions, they are zeroized within the Cryptographic
Module.

4.2 Authentication
Module services are logically separated through the API and the roles of Crypto-Officer and User are
implicitly assumed, as the module does not provide authentication. Instead, the operator must
authenticate to the underlying Windows OS in order to use the module.

5. Self-Tests
Correct operation of the Cryptographic Module is assured through the implemented power-up and
conditional self-tests.

5.1 Power-Up Self-Tests
All power-up self-tests explained below, are invoked automatically by the module library at load time.
The KSC_CM_StateInit function instantiates the Cryptographic Module. The Cryptographic Module
defines the DllMain function and calls the KSC_CM_StateInit function in it. Should any self-test fail,
the state of the Cryptographic Module transitions to a hard error state. The Cryptographic Module
returns the error, which must be resolved by the Crypto-Officer in order to restore correct operation.

The following items are tested as part of the self-tests:

Copyright(c) Raonsecure Co., Ltd. This document may be freely reproduced and distributed whole and

intact including this copyright notice. 13

 Cryptographic algorithm test: The cryptographic algorithm test performs the Known
Answer Test (KAT) and the Pair-wise Consistency Test. The KAT that compares the result of
performing the cryptographic operation with the known value. It is executed for the Approved
algorithms in the Cryptographic Module to check for correct operation and when a failure
occurs, the module transitions to the Hard Error state. The Pair-wise Consistency Test is
performed using the public and private key pairs. If the pairwise test fails, the module
transitions to the Hard Error state.

 Software integrity test: In order to test the integrity of the module, the RSASSA-PSS
signature attached to the Cryptographic Module library is verified by the public key at power-
up to ensure the module has not been modified.

 Critical Functions Test: As one of the critical functions, the health test of NIST SP 800-90A
DRBG, Section 11.3 (instantiate, reseed and generate) are executed. The other critical
function is the continuous RNG test, which continuously gathers entropy for comparison
between the previous and current data block. The test checks to see if the entropy bit strings
of the two blocks are the same, and proceeds to the error state if they are.

The following table specifies the error conditions which are possible for self-tests:

Test Item Error Conditions

Cryptographic Algorithm Test
When the test results are not consistent with the known values
and fail the known answer / pairwise consistency tests.

Software Integrity Test When verification of the RSA signature fails

Critical Function Test
When the gathered entropy blocks continuously have the same
values or the health test of the NIST SP 800-90A DRBG have
failed.

Table 11 Self-Test Error Conditions

The following table contains the module’s power-up self-tests:

Cryptographic Algorithm Test Method
AES-128-ECB encrypt
AES-128-ECB decrypt
AES-192-ECB encrypt
AES-192-ECB decrypt
AES-256-ECB encrypt
AES-256-ECB decrypt
AES-128-CBC encrypt
AES-128-CBC decrypt
AES-192-CBC encrypt
AES-192-CBC decrypt
AES-256-CBC encrypt
AES-256-CBC decrypt
AES-128-CFB8 encrypt
AES-128-CFB8 decrypt
AES-192-CFB8 encrypt
AES-192-CFB8 decrypt
AES-256-CFB8 encrypt
AES-256-CFB8 decrypt

Known Answer Test

Copyright(c) Raonsecure Co., Ltd. This document may be freely reproduced and distributed whole and

intact including this copyright notice. 14

AES-128-CFB128 encrypt
AES-128-CFB128 decrypt
AES-192-CFB128 encrypt
AES-192-CFB128 decrypt
AES-256-CFB128 encrypt
AES-256-CFB128 decrypt

AES-128-OFB encrypt
AES-128-OFB decrypt
AES-192-OFB encrypt
AES-192-OFB decrypt
AES-256-OFB encrypt
AES-256-OFB decrypt
AES-128-CTR encrypt
AES-192-CTR encrypt
AES-256-CTR encrypt

RSA
SigGen-PKCS1.5 Known Answer Test

SigVer-PKCS1.5, SigVerPSS Known Answer Test
Pairwise consistency test with 2048 bit and 3072 bit key

ECDSA Pairwise consistency test with P-256 curve

DRBG
SP 800-90A Hash DRBG known answer test SP 800-90A

Section 11.3 Health Tests (instantiate, reseed and generate)
SHA-1 Known Answer Test

SHA-256 Known Answer Test
SHA-384 Known Answer Test
SHA-512 Known Answer Test

HMAC-SHA-1 Known Answer Test
HMAC-SHA-256 Known Answer Test
HMAC-SHA-384 Known Answer Test
HMAC-SHA-512 Known Answer Test

Software integrity test RSASSA-PSS 2048-bit digital signature using SHA-256
Table 12 Test Method by Cryptographic Algorithm

5.2 Conditional Tests
The following conditional tests are automatically performed by the Cryptographic Module:

 Pair-wise consistency test : After RSA and ECDSA keys are generated, the consistency of
the generated key pairs is automatically tested.

- RSA checks whether the two-key encryption/decryption was successfully performed and
whether digital signature verification was properly tested.

- ECDSA checks whether digital signature verification is valid.
 Continuous RNG tests : The OE contains an RNG which seeds the NIST SP 800-90A

DRBG and performs the required continuous RNG test. It records the previously gathered
(512-bytes) of entropy in a safe memory space and compares it with the entropy gathered
afterward. The test fails if the newly gathered entropy is the same as the recorded 512-bytes.
A continuous test is also performed on the output of the NIST SP 800-90A DRBG

Copyright(c) Raonsecure Co., Ltd. This document may be freely reproduced and distributed whole and

intact including this copyright notice. 15

The following are the error conditions for each test item:

Test Item Error Conditions

Pair-wise Consistency Test
When after signing as a private key,
the verification as a public key fails

Software Load Test N/A
Manual Key Entry Test N/A

Continuous RNG Tests When the results generated by the entropy source (RNG) or
NIST SP 800-90A DRBG has repeatedly consistent values

Bypass Test N/A
Table 13 Error Conditions of Conditional Self-Tests

6. Operational Environment
The operational environment of the Cryptographic Module is the general-purpose computer specified
in Section 6.1, with the Windows operating system specified in Section 6.2

Note: The Cryptographic Module will operate correctly on other GPC platforms running Microsoft
Windows; however, no claim can be made as to the correct operation of the module or the security
strengths of the generated keys when ported to an operational environment which is not listed on the
validation certificate.

6.1 General Purpose Computer
The Cryptographic Module executes on the hardware of a general-purpose computer. The
Cryptographic Module was tested on the following general-purpose computer as per the requirements
of FIPS 140-2, Level 1:

6.1.1 Test Environment
 PC: HP Pavilion Slimline s5-1250kr Desktop PC
 CPU: Intel(R) Core (TM) i5-2400 CPU @ 3.10GHz 3.10 GHz
 Memory: 12.00GB
 SSD: 256GB
 HDD: 1TB

6.2 General Purpose Operating System
The Cryptographic Module was tested on the following general-purpose operating system:

 Windows 10 (64-bit)

The Windows operating system segregates user processes into separate process spaces. Each
process space is logically separated from all other processes by the operating system. The
Cryptographic Module functions entirely within the process space of the calling application and
implicitly satisfies the FIPS 140-2 requirement for a single user mode of operation.

Copyright(c) Raonsecure Co., Ltd. This document may be freely reproduced and distributed whole and

intact including this copyright notice. 16

7. Security Rules
The Cryptographic Module was designed with the following security rules in mind:

1. The Cryptographic Module shall provide two distinct operator roles. These are the User role, and
the Crypto-Officer role.

2. The Cryptographic Module does not provide any operator authentication.

3. The operator shall be capable of commanding the Cryptographic Module to perform the Power-Up
Self-Test using recycling power or KFC_CM_SelfTest function.

4. The module functions entirely within the process space of the calling application, and implicitly
satisfies the FIPS 140-2 requirement for a single-user mode of operation.

5. The Cryptographic Module does not output intermediate key generation values.

6. The Cryptographic Module is available to perform services only after successfully completing the
Power-Up Self-Tests.

7. Security functions listed in Table 6 in this Security policy are not allowed for use in the FIPS
Approved mode of operation. When these algorithms are used, the Cryptographic Module is no
longer operating in the FIPS Approved mode of operation. It is the responsibility of the calling
application to zeroize all keys and CSPs prior to and after utilizing these non-Approved algorithms. As
per CMVP IG 1.2: CSPs defined in the Approved mode of operation, shall not be accessed or
shared while in the non-Approved mode of operation.

8. Mitigation of Other Attacks
The Cryptographic Module is not designed to mitigate against attacks which are outside the scope of
FIPS 140-2.

9. Installation and Instantiation
The Cryptographic Module supports Approved and non-Approved modes of operation and there are
no specific installation steps that need to be taken. The module binary can simply be placed in a
folder on a GPC disk drive and accessed by a calling application.

All power-up self-tests are invoked by the operating system at library load time. Therefore, the state of
the Cryptographic Module is already in the Approved mode of operation upon the successful
invocation of the KFC_CM_StateInit function. The application can call the KFC_CM_StateInfo function
and check the return code = KC_STATE_ID_CMVP (5) to verify that the module has been initialized in
FIPS mode e.g. passed self-tests.

