

nShield 5s Hardware Security Module

FIPS 140-3 Level 3 non-proprietary Security Policy

Version: 2.0.3

Date: 07/08/2024

Copyright © 2020 nCipher Security Limited. All rights reserved.

Copyright in this document is property of nCipher Security Limited. This document may be reproduced and distributed in whole (i.e., without modification) provided that the copyright notice and Entrust branding has not been removed or altered. Words and logos marked with [®] or [™] are trademarks of nCipher Security Limited or its affiliates in the EU and other countries.

Mac and OS X are trademarks of Apple Inc., registered in the U.S. and other countries.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Linux[®] is the registered trademark of Linus Torvalds in the U.S. and other countries.

Information in this document is subject to change without notice.

nCipher Security Limited makes no warranty of any kind with regard to this information, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. nCipher Security Limited shall not be liable for errors contained herein or for incidental or consequential damages concerned with the furnishing, performance or use of this material.

Where translations have been made in this document English is the canonical language.

nCipher Security Limited Registered Office: One Station Square, Cambridge, CB1 2GA, United Kingdom Registered in England No. 11673268

nCipher is an Entrust company.

Entrust, Datacard, and the Hexagon Logo are trademarks, registered trademarks, and/or service marks of Entrust Corporation in the U.S. and/or other countries. All other brand or product names are the property of their respective owners. Because we are continuously improving our products and services, Entrust Corporation reserves the right to change specifications without prior notice. Entrust is an equal opportunity employer.

Contents

1	Gen	eral4
2	Cry	otographic module specification5
	2.1	Scope5
	2.2	Cryptographic module description5
	2.3	Supported cryptographic algorithms6
3	Cry	otographic module interfaces11
4	Role	es, services and authentication12
	4.1	Roles
	4.2	Services
5	Soft	ware/Firmware security
6	Оре	erational environment
7	Phy	sical security27
8	Nor	n-invasive security
9	Sen	sitive security parameters management29
	9.1	Keys and Sensitive Security Parameters
	9.2	SSP zeroization methods
	9.3	Entropy sources
10	Self	tests
	10.1	L Pre-operational self tests
	10.2	2 Conditional self tests
	10.3	3 Periodic self tests
11	Life	-cycle assurance
	11.1	L Delivery
	11.2	2 Cryptographic module identification
	11.3	Approved mode of operation41
	11.4	1 End of life
12	Mit	igation of other attacks
Со	ntac	t Us

1 General

This document defines the non-proprietary Security Policy enforced by the nShield 5s Hardware Security Module, i.e. the Cryptographic Module, to meet with the security requirements in FIPS 140-3 and ISO/IEC 19790.

The Cryptographic Module meets overall **FIPS 140-3 Security Level 3**. The following table specifies the security level in detail.

ISO/IEC 24759 Section 6.	FIPS 140-3 Section Title	Security Level
[Number Below]		
1	General	3
2	Cryptographic Module Specification	3
3	Cryptographic Module Interfaces	3
4	Roles, Services and Authentication	3
5	Software/Firmware security	3
6	Operational Environment	N/A
7	Physical Security	3
8	Non-invasive Security	N/A
9	Sensitive Security Parameter Management	3
10	Self-Tests	3
11	Life-cycle Assurance	3
12	Mitigation of Other Attacks	N/A

Table 1 Security levels

2 Cryptographic module specification

2.1 Scope

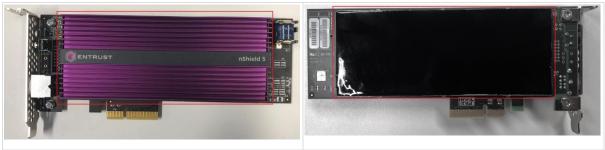
The following product hardware variants and firmware version(s) are in scope of this Security Policy.

Model	Hardware [Part Number and Version]	Firmware Version	Distinguishing Features
nShield 5s F3 model number nC5536E	PCB Assembly Part Number: PCA10005-01 PCB Assembly Revision:	primary: 13.4.5 recovery:	PCIe form factor
nShield 5s for nShield 5c and for nShield HSMi model number nC5536N	03, 04	13.2.4 uboot: 1.1.0	PCIe form factor identical to the nShield 5s F3 (nC5536E), embedded inside the nShield 5c or the nShield HSMi network appliances.

Table 2 Cryptographic Module Tested Configuration

2.2 Cryptographic module description

The nShield 5s Hardware Security Module (HSM) is a multi-chip embedded hardware Cryptographic Module as defined in FIPS 140-3, which comes in a PCI express board form factor protected by a tamper resistant enclosure, and performs encryption, digital signing, and key management on behalf of an extensive range of commercial and custom-built applications including public key infrastructures (PKIs), identity management systems, application-level encryption and tokenization, SSL/TLS, and code signing.


The nShield 5s HSM is also embedded inside the nShield 5c or the nShield HSMi, which are networkattached appliances delivering cryptographic services as a shared network resource for distributed applications and virtual machines, giving organizations a highly secure solution for establishing physical and logical controls for server-based systems.

The table below shows the nShield 5s HSM (left, representative of the two hardware variants nC5536E, nC5536N) and the nShield 5c appliance (right).

Table 3 nShield 5s (left) and nShield 5c (right)

The cryptographic boundary is delimited in red in the images in the table below. It is delimited by the heat sink and the outer edge of the potting material on the top and bottom of the PCB.

Table 4 Cryptographic module boundary

The module enforces that only approved services are available and plaintext import/export of secret or private keys is not allowed. Refer to <u>Approved mode of operation</u>.

2.3 Supported cryptographic algorithms

This section describes the cryptographic mechanisms and security functions provided and used by the cryptographic module.

2.3.1 Approved algorithms

The following tables describe the approved cryptographic algorithms supported by the Cryptographic Module.

CAVP Cert	Algorithm and Standard	Mode/Method	Description / Key Size(s) / Key Strength(s)	Use / Function
<u>A3707</u>	AES	ECB	128 bits	Data encryption/decryption
	[FIPS 197] [SP 800- 38A] [SP 800-38D]	CBC GCM	192 bits 256 bits	
<u>A3707</u>	KTS (AES) [SP 800-38F] [SP 800-38D]	KW KWP GCM	128 bits 192 bits 256 bits (Key establishment methodology provides between 128 and 256 bits of encryption strength)	Key wrapping/unwrapping
<u>A3707</u>	KTS-IFC	KTS-OAEP-basic with SHA2-224, SHA2-256, SHA2-384, SHA2-512, SHA3-224, SHA3-256, SHA3-384, SHA3-512	2048 bits 3072 bits 4096 bits (Key establishment methodology provides between 112 and 152 bits of encryption strength)	Key transport (encapsulation, un-encapsulation)
Vendor affirmed	CKG [SP 800-133rev2]	Section 4 "Using the Output of a Random Bit Generator"	n/a	Key generation
<u>A3707</u>	RSA [FIPS 186-4]	RSASSA-PKCS-v1_5 RSASSA-PSS	1024 bits (verification only) 2048 bits	Key generation

2.3.1.1 nCore crypto

CAVP Cert	Algorithm and Standard	Mode/Method	Description / Key Size(s) / Key Strength(s)	Use / Function
			3072 bits 4096 bits	Signature generation and verification
<u>A3707</u>	ECDSA	n/a	NIST P-224, P-256, P-384, P-521	Key generation
	[FIPS 186-4]		NIST K-233, K-283, K-409, K-571	Key verification
			NIST B-233, B-283, B-409, B-571	Signature generation and verification
<u>A3707</u>	DSA [FIPS 186-4]	n/a	L = 1024 bits, N = 160 bits (verification only) L = 2048 bits, N = 224 bits	Key generation Signature generation and verification
			L = 2048 bits, N = 256 bits L = 3072 bits, N = 256 bits	Domain parameter generation and verification
<u>A3707</u>	HMAC [FIPS 198]	HMAC-SHA1, HMAC-SHA2-224, HMAC-SHA2-256, HMAC-SHA2-384, HMAC-SHA2-512, HMAC-SHA3-224, HMAC-SHA3-256, HMAC-SHA3-384, HMAC-SHA3-512	≥ 112 bits	MAC generation and verification
<u>A3707</u>	AES	CMAC	128 bits	MAC generation and
	[SP 800-38B]		192 bits	verification
			256 bits	
<u>A3707</u>	KMAC [SP 800-185]	KMAC-128 KMAC-256	≥ 112 bits	MAC generation and verification
<u>A3707</u>	KAS-FFC	DH	MODP-2048	Key agreement
	[SP 800-56Arev3]		MODP-3072	
			MODP-4096	
			MODP-6144	
			MODP-8192	
			FB	
			FC	
			(Key establishment methodology provides between 112 and 200 bits of encryption strength)	
<u>A3707</u>	Safe Primes Key Generation [SP 800-56Arev3]	KeyGen for KAS-FFC	Safe prime groups: MODP-2048, MODP-3072, MODP-4096, MODP- 6144, MODP-8192	KAS-FFC key generation
			(Provides between 112 and 200 bits of encryption strength.)	
<u>A3707</u>	Safe Primes Key Verification [SP 800-56Arev3]	KeyVer for KAS-FFC	Safe prime groups: MODP-2048, MODP-3072, MODP-4096, MODP- 6144, MODP-8192	KAS-FFC key verification
<u>A3707</u>	KAS-ECC	ECDH	NIST P-224, P-256, P-384, P-521	Key agreement
	[SP 800-56Arev3]	ECMQV	NIST K-233, K-283, K-409, K-571	
			NIST B-233, B-283, B-409, B-571	

CAVP Cert	Algorithm and Standard	Mode/Method	Description / Key Size(s) / Key Strength(s)	Use / Function
			(Key establishment methodology provides between 112 and 256 bits of encryption strength)	
<u>A3707</u>	KBKDF [SP 800-108rev1]	counter mode CMAC-AES256	n/a	Key derivation
<u>A3707</u>	SHS [FIPS 180-4]	SHA-1 SHA2-224 SHA2-256 SHA2-384 SHA2-512	n/a	Message digest
<u>A3707</u>	SHA-3 [FIPS 202]	SHA3-224 SHA3-256 SHA3-384 SHA3-512	n/a	Message digest
<u>A3707</u>	DRBG [SP 800-90Arev1]	Hash_DRBG	256 bits of security strength	Random bit generation

Table 5 nCore - Approved Algorithms

Note: For AES GCM, the 96-bit IV is internally generated using the approved DRBG as per IG C.H.

2.3.1.2 Bootloader crypto

CAVP Cert	Algorithm and Standard	Mode/Method	Description / Key Size(s) / Key Strength(s)	Use / Function
<u>A2404</u>	RSA [FIPS 186-4]	RSASSA-PKCS-v1_5	4096 bits	Signature verification
<u>A2404</u>	SHS [FIPS 180-4]	SHA2-256	n/a	Message digest

Table 6 Bootloader - Approved Algorithms

2.3.1.3 SSH crypto

CAVP Cert	Algorithm and Standard	Mode/Method	Description / Key Size(s) / Key Strength(s)	Use / Function
<u>A3706</u>	AES [FIPS 197] [SP 800-38A] [SP 800-38D]	CTR GCM ECB	128 bits	Data encryption/decryption
Vendor affirmed	CKG [SP 800- 133rev2]	Section 4 "Using the Output of a Random Bit Generator"	n/a	Key generation
<u>A3706</u>	ECDSA [FIPS 186-4]	n/a	NIST P-256 NIST P-521	Signature generation and verification

CAVP Cert	Algorithm and Standard	Mode/Method	Description / Key Size(s) / Key Strength(s)	Use / Function
<u>A3706</u>	HMAC [FIPS 198]	HMAC-SHA2-256	≥ 112 bits	MAC generation and verification
<u>A3706</u>	KAS-ECC-SSC [SP 800- 56Arev3]	ECDH	NIST P-256 (Key establishment methodology provides between 128 bits of encryption strength)	Key agreement
<u>A3706</u>	CVL - Secure Shell (SSHv2) KDF [SP 800- 135rev1]	n/a	n/a	Key derivation
<u>A3706</u>	KAS-ECC [SP 800- 56Arev3 [SP 800-135rev1]	ECDH	NIST P-256 (Key establishment methodology provides between 128 bits of encryption strength)	Key agreement, KAS-ECC-SSC (cert# <u>A3707</u>) in conjunction with SSHv2 KDF of SP 800-135rev1 (cert# <u>A3707</u>), which is compliant with IG D.F. Scenario 2, path 2.
<u>A3706</u>	SHS [FIPS 180-4]	SHA2-256 SHA2-512	n/a	Message digest

Table 7 SSH - Approved Algorithms

Note: As per IG D.C., no parts of this protocol, other than the approved cryptographic algorithms and the KDFs, have been tested by the CAVP and CMVP.

Note: For AES GCM, the module is compliant with RFCs 4252, 4253 and 5647, and the IV is generated according to the SSHv2 protocol IV generation, as per IG C.H. In case the module's power is lost and then restored, a new key for use with the AES-GCM encryption/decryption is established.

2.3.2 Allowed algorithms

The following table describes the allowed cryptographic algorithms supported by the Cryptographic Module.

2.3.2.1	nCore	crypto
---------	-------	--------

Algorithm	Caveat	Use/Function
ECDSA	• brainpoolP224r1/P224t1 (112 bits of strength)	Key generation
[FIPS 186-4]	• brainpoolP256r1/P256t1 (128 bits of strength)	Signature generation and verification
	• brainpoolP320r1/P320t1 (160 bits of strength)	
	• brainpoolP384r1/P384t1 (192 bits of strength)	
	• brainpoolP512r1/P512t1 (256 bits of strength)	
KAS-ECC	• brainpoolP224r1/P224t1 (112 bits of strength)	Key agreement
[SP 800-56Arev3]	• brainpoolP256r1/P256t1 (128 bits of strength)	
	• brainpoolP320r1/P320t1 (160 bits of strength)	

Algorithm	Caveat	Use/Function
	• brainpoolP384r1/P384t1 (192 bits of strength)	
	• brainpoolP512r1/P512t1 (256 bits of strength)	

Table 8 nCore - Non-Approved Algorithms Allowed in the Approved Mode of Operation

2.3.3 Non-approved algorithms

Only approved and non-approved but allowed cryptographic algorithms are supported.

3 Cryptographic module interfaces

The Cryptographic Module provides the following physical ports:

- Status LED
- Recovery button
- Smartcard reader serial port
- Host interface PCIe bus
- Battery (including external backup battery power supply)

The following table maps the FIPS logical interfaces and physical ports to the module's services

Physical port	Logical interface	Data that passes over port/interface
PCIe bus	Data input	nCoreAPI, Updater, SSHAdmin, Launcher
	Data output	nCoreAPI, SSHAdmin, Launcher
	Control input	nCoreAPI, SSHAdmin, Setup, Monitor, Launcher, Discovery
	Status output	nCoreAPI, Updater, Setup, Monitor, Launcher, Discovery
	Power	n/a
Smartcard reader serial port	Data input	APDU commands
	Data output	APDU commands
Status LED	Status output	n/a
Recovery button	Control input	n/a
Battery	Power	n/a

Table 9 Ports and Interfaces

Note: Control output is omitted because the module does not implement it.

4 Roles, services and authentication

4.1 Roles

The Cryptographic Module supports the following roles:

- Platform Crypto Officer (PCO)
- nShield Security Officer (NSO)
- User Client (UC)

Platform Crypto Officer (PCO)

This role is responsible of administration tasks of the HSM platform.

To assume this role, an operator needs to open a session with the SSHAdmin, Updater, Setup, Monitor or Launcher services, using its SSH private key for each service.

When the module is in factory state, the SSHAdmin client SSH keys are set to a default value. These keys must be changed with the SSHAdmin set service before the module can be initialised and used.

nShield Security Officer (NSO)

This role is represented by Administrator Card holders, which have access to KNSO and are responsible for the overall management of a Security World.

To assume this role, an operator or group of operators need to present a quorum m of N of smartcards, and the KNSO Key Blob. Each operator is identified by its individual smartcard, which contains a unique logical token share.

User Client (UC)

This role is authorised to use the general purpose cryptographic services offered by the cryptographic module.

To assume this role, a client application needs to open a session with the nCoreAPI service, using its SSH private key.

Role	Service	Input	Output
PCO	SSHAdmin	Data	Data
	Updater	Control	Status
	Setup		
	Monitor		
	Launcher		
UC	nCoreAPI	Data	Data
		Control	Status
NSO	nCoreAPI	Data	Data
		Control	Status

Table 10 Roles, Service Commands, Input and Output

Role	Authentication Method	Authentication Strength
PCO UC	ECDSA P-256, P-521 client key authentication as part of establishing an SSH based secure channel. Identity-based and required.	The ciphersuites used are: ecdh-sha2-nistp256, ecdh-sha2-nistp521, aes128-gcm@openssh.com, aes128- ctr@openssh.com, hmac-sha2-256-etm@openssh.com This results in a security strength of 128 bits. A random authentication attempt gives is a probability of success of 2 ⁻¹²⁸ , which is less than one in 1,000,000. The module can process around 2 ²⁰ commands per minute. This gives a probability of success in a one minute period of 2 ⁻¹⁰⁸ , which is less than one in 100,000.
NSO	smartcard authentication. Identity-based and required.	A logical token share stored in a Smartcard or Softcard is encrypted and MAC'ed. An attacker would need to guess the encrypted share value and the associated MAC in order to be able to load a valid Logical token share into the module. This requires, as a minimum, guessing a 256-bit HMAC-SHA256 value, which gives a security strength of 256 bits. A random authentication attempt gives is a probability of success of 2 ⁻²⁵⁶ , which is less than one in 1,000,000. The module can process around 2 ²⁰ commands per minute. This gives a probability of success in a one minute period of 2 ⁻²³⁶ , which is less than 10 ⁻⁵ , which is less than one in 100,000.

Table 11 Roles and Authentication

4.2 Services

The following table describes the services provided by the Cryptographic Module and the access policy.

The Access column presents the access level given to the SSP

G = Generate: The module generates or derives the SSP.

R = Read: The SSP is read from the module (e.g. the SSP is output).

W = Write: The SSP is updated, imported, or written to the module.

E = Execute: The module uses the SSP in performing a cryptographic operation.

Z = Zeroise: The module zeroises the SSP

4.2.1 Setup service

Service	Description	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
info	This is a Show Module's Versioning Information service. This command prints out the contents of the board-id rom file and a number of flags that indicate which other setup subcommands have been previously executed as determined by the existence or non-existence of the relevant files in long-term storage. It also prints out the tag and value pairs	Data encryption/decryption (AES CTR, GCM) MAC generation / verification (HMAC)	KSESSION - SSH	РСО	E	return value 0

Service	Description	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
	of any options set with the setopt subcommand.					
factorystate	This is the <i>Perform Zeroisation</i> service. It zeroizes unprotected SSPs and returns the module to factory state. It then initiates a module reboot.	Data encryption/decryption (AES CTR, GCM) MAC generation / verification (HMAC)	KRESET (note: any SSP that is derived from KRESET, or protected by an SSP derived from KRESET, will also be effectively zeroised.) KSESSION - SSH KUSER_SSH, KSSH_SETUP, KSSH_SSHADMIN, KSSH_MONITOR, KSSH_UPDATER, KCONTAINER, KCONTAINER, KSSH_NCORE	PCO	Z E G (note: SSH server authentication keys are only generated on first reboot after a setup factorystate command)	return value 0
settime	This subcommand sets the system date and time.	Data encryption/decryption (AES CTR, GCM) MAC generation / verification (HMAC)	KSESSION - SSH	PCO	E	return value 0
gettime	This subcommand returns the system date and time.	Data encryption/decryption (AES CTR, GCM) MAC generation / verification (HMAC)	KSESSION - SSH	PCO	E	return value 0

Table 12 Approved Services

The approved service indicator is the successful completion of these services (return value 0), as they only use approved mechanisms.

4.2.2 SSHAdmin service

Service	Description	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
set	Loads the client public key in the module, that will be used to authenticate the requester of a particular service		KSSH_CLIENT pub KSESSION - SSH	PCO	W E	return value 0
list	Obtains the client public key for the service given by the 'role' parameter.	Data encryption/decryption (AES CTR, GCM) MAC generation / verification (HMAC)	KSSH_CLIENT pub KSESSION - SSH	PCO	R	return value 0
get- serverkey	Obtains the server public key for the service given by the 'role' parameter.	Data encryption/decryption (AES CTR, GCM)	KSSH_NCORE pub	PCO	R R	return value 0

Service	Description	Approved Security Functions	Keys and/or SSPs	Access rights to Keys and/or SSPs	Indicator
		MAC generation / verification (HMAC)	KSSH_UPDATER pub KSSH_SETUP pub KSSH_SSHADMIN pub KSSH_MONITOR pub KSESSION - SSH	R	

Table 13 Approved Services

The approved service indicator is the successful completion of these services (return value 0), as they only use approved mechanisms.

4.2.3 Updater service

Service	Description	escription Approved Security F Functions a S		Roles	Access rights to Keys and/or SSPs	Indicator
info	This is a <i>Show Module's Versioning Information</i> service. Obtains the version number of the HSM firmware.	Data encryption/decryption (AES) MAC generation / verification (HMAC)	KSESSION - SSH	PCO	E	return value 0
receive	Transmits a file (intended to be an npkg upgrade file) to the HSM.	Data encryption/decryption (AES) MAC generation / verification (HMAC)	KSESSION - SSH	PCO	E	return value 0
load	Verifies that a file on the HSM filesystem is a valid npkg upgrade file and, if so loads the file onto its flash partition.	Digital signature verification (RSA, ECDSA) Data encryption/decryption (AES) MAC generation / verification (HMAC)	NSBIK pub NPSK pub NFIK pub NLIK pub KSESSION - SSH	PCO	E E E E	return value 0
setminvsn	Sets the minimum VSN that the module will use to check, when the 'load' command above is run, that the firmware specified can be validly loaded onto this module.	Data encryption/decryption (AES) MAC generation / verification (HMAC)	KSESSION - SSH	PCO	E	return value 0

Table 14 Approved Services

The approved service indicator is the successful completion of these services (return value 0), as they only use approved mechanisms.

4.2.4 Monitor service

Service	Description	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
getlog	This is the <i>Show Status</i> service. Obtains the log of the system	Data encryption/decryption (AES CTR, GCM) MAC generation / verification (HMAC)	KSESSION - SSH	PCO	E	return value 0
clearlog	Clears the log of the system	Data encryption/decryption (AES CTR, GCM) MAC generation / verification (HMAC)	KSESSION - SSH	PCO	E	return value 0
getenvstats	Obtains the environmental stats from the system	Data encryption/decryption (AES CTR, GCM) MAC generation / verification (HMAC)	KSESSION - SSH	PCO	E	return value O

Table 15 Approved Services

The approved service indicator is the successful completion of these services (return value 0), as they only use approved mechanisms.

4.2.5 Launcher service

Service	Description	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
receive	Uploads a file to the launcher service for temporary storage.	Data encryption/decryption (AES CTR, GCM) MAC generation / verification (HMAC)	KSESSION - SSH	PCO	E	return value 0
machine create	Creates a SEE machine container from a received file, after successfully being validated.	Digital signature verification (ECDSA) Data encryption/decryption (AES CTR, GCM) MAC generation / verification (HMAC)	DSK pub KSESSION - SSH	PCO	E	return value 0
machine list			KSESSION - SSH	PCO	E	return value 0
start	Starts a SEE machine after successfully being validated.	Digital signature verification (ECDSA) Data encryption/decryption (AES CTR, GCM) MAC generation / verification (HMAC)	DSK pub KSESSION - SSH	PCO	E	return value 0

Service	Description	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
stop	Stops a SEE machine.	Data encryption/decryption (AES CTR, GCM) MAC generation / verification (HMAC)	KSESSION - SSH	PCO	E	return value 0
destroy	Deletes a SEE machine.	Data encryption/decryption (AES CTR, GCM) MAC generation / verification (HMAC)	KSESSION - SSH	PCO	E	return value 0
ids commands	Management of the SEE machine signing certificates.			PCO	R, W, E E E	return value 0
see-log commands	Management of the SEE machine logs.	Data encryption/decryption (AES) MAC generation / verification (HMAC)	KSESSION - SSH	PCO	E	return value 0

Table 16 Approved Services

The approved service indicator is the successful completion of these services (return value 0), as they only use approved mechanisms.

4.2.6 Discovery service

Service	Description	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
python- zeroconf	The (logical) network connection between host and HSM uses TCP/IP protocols over the PCIe bus; however, for ease of setup it needs to avoid requiring IP configuration by the user. Therefore the HSM uses <u>zeroconf</u> : each end of the virtual 'network segment' has only a link-local (IPv4 and IPv6) address. The HSM's address can be discovered by the host using multicast DNS, responding to mDNS queries.	-	-	Unauthenticated	-	return value 0

Table 17 Approved Services

The approved service indicator is the successful completion of these services (return value 0), as they only use approved mechanisms.

4.2.7 nCoreAPI service

Service	Description	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
Big number operation Cmd_BignumOp	Performs an operation on a large integer.	-	-	UC	-	return status OK
Make Blob Cmd_MakeBlob	Creates a Key blob containing the key. Note that the key ACL needs to authorize the operation.	Key derivation (KBKDF) Key wrapping (AES CBC and HMAC, KTS-IFC)	KA, KRE_BLOBKEY, KR, KM, KNSO, LTx BLOBKE, BLOBKM	UC	R	return status OK
Bulk channel Cmd_ChannelOpen Cmd_ChannelUpdate	Provides a bulk processing channel for crypto operations	Encryption and decryption (AES ECB, CBC, GCM) MAC generation and verification (HMAC, KMAC, AES CMAC) Digital signature generation and verification (RSA, ECDSA, DSA)	КА	UC	E	return status OK
Check User Action Cmd_CheckUserAction	Determines whether the ACL associated with a key allows a specific operator defined action.	-	KNSO, KA	UC	R	return status OK
Clear Unit Cmd_ClearUnit	This is the <i>Perform Self-tests</i> service. Zeroises all keys, tokens and shares that are loaded in RAM. Will cause the module to reboot and perform self-tests.	-	KA, KR, IMPATHKE, IMPATHKM, RAKME, RAKMA	UC	Z	return status OK
Set Module Key Cmd_SetKM	Allows a key to be stored internally as a Module key (KM) value. The ACL needs to authorize this operation.	Message digest (SHA-1)	КМ	NSO	W	return status OK
Remove Module Key Cmd_RemoveKM	Deletes the KM with a given KM hash value from non- volatile memory.	-	КМ	NSO	Z	return status OK
Duplicate key handle Cmd_Duplicate	Creates a second instance of a Key with the same ACL and returns a handle to the new instance. Note that the source key ACL needs to authorize this operation.	•	КА	UC	R	return status OK
Enable feature Cmd_StaticFeatureEnable	Enables the service. This service requires a certificate	-	-	UC	-	return status OK

Service	Description	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
	signed by the Master Feature Enable key.					
Encryption / decryption Cmd_Encrypt Cmd_Decrypt	Encryption and decryption using the provided key handle.	Data encryption and decryption (AES ECB, CBC, GCM)	KA	UC	E	return status OK
Erase from smartcard /softcard Cmd_EraseFile Cmd_EraseShare	Removes a file or a share from a smartcard or softcard	-	-	UC	-	return status OK
Format Token Cmd_FormatToken	Formats a smartcard or a softcard.	-	-	UC	-	return status OK
File operations Cmd_FileCopy Cmd_FileCreate Cmd_FileErase Cmd_FileOp	Performs file operations in the module.	-	-	UC	-	return status OK
Force module to fail Cmd_Fail	Causes the module to enter a failure state.	-	-	UC	-	return status OK
Generate prime number Cmd_GeneratePrime	Generates a random prime.	Random bit generation (DRBG)	DRBG entropy input, seed, internal state ('V' and 'C')	UC	E	return status OK
Generate random number Cmd_GenerateRandom	Generates a random number from the Approved DRBG.	Random bit generation (DRBG)	DRBG entropy input, seed, internal state ('V' and 'C')	UC	E	return status OK
Get ACL Cmd_GetACL	Get the ACL of a given key.	-	КА	UC	R	return status OK
Get key application data Cmd_GetAppData	Get the application data field from a key.	-	КА	UC	R	return status OK
Get challengeGet a random challenge that can be used in fresh certificates.		Random bit generation (DRBG)	DRBG entropy input, seed, internal state ('V' and 'C')	UC	E	return status OK
Get KLF2 Cmd_GetKLF2	Get a handle to the Module Long Term (KLF2) public key.	-	-	UC	-	return status OK
Get Key Information Cmd_GetKeyInfo Cmd_GetKeyInfoEx	Get the type, length and hash of a key.	Message digest (SHA-1)	KA	UC	R	return status OK

Service	Description	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
Get module signing key Cmd_GetKML	Get a handle to the KML public key.	-	KML	UC	R	return status OK
Get list of slot in the module Cmd_GetSlotList	Get the list of slots that are available from the module.	-	-	UC	-	return status OK
Get Logical Token Info Cmd_GetLogicalTokenInfo Cmd_GetLogicalTokenInfoEx	Get information about a Logical Token: hash, state and number of shares.	Message digest (SHA-1)	LTx	UC	R	return status OK
Get list of module keys Cmd_GetKMList	Get the list of the hashes of all module keys and the KNSO.	Message digest (SHA-1)	KM, KNSO	UC	R	return status OK
Get module state Cmd_GetModuleState	Returns unsigned data about the current state of the module.	-	-	UC	-	return status OK
Get real time clock Cmd_GetRTC	Get the current time from the module Real Time Clock.	-	-	UC	-	return status OK
Get share access control list Cmd_GetShareACL	Get the Share's ACL.	-	SHAREKEY	UC	R	return status OK
Get Slot Information Cmd_GetSlotInfo	Get information about shares and files on a Smartcard that has been inserted in a module slot.	-	-	UC	-	return status OK
Get Ticket Cmd_GetTicket	Get a ticket (an invariant identifier) for a key. This can be passed to another client or to a SEE World which can redeem it using Redeem Ticket to obtain a new handle to the object.	-	-	UC	-	return status OK
Initialize Unit Cmd_InitializeUnit Cmd_InitializeUnitEx	Causes the nCore API service in the pre-initialization state to enter the initialization state. When the module enters the initialization state, it erases all Module keys (KM), the module's signing key (KML), and the hash of the Security Officer's keys, HKNSO. It then generates a new KML and KM.	RSA, DSA) Message digest (SHA-1)	HKNSO KA, KRE_BLOBKEY, KR, KM, KAL, KML, KNSO, HKNSO, LTX	UC	Z, G	return status OK
Insert a Softcard Cmd_InsertSoftToken	Allocates memory on the module that is used to store the logical token share and other data objects.	-	-	UC	-	return status OK
Remove a Softcard Cmd_RemoveSoftToken	Removes a Softcard from the module. It returns the updated	-	-	UC	-	return status OK

Service	Description	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
	shares and deletes them from the module's memory.					
Impath secure channel Cmd_ImpathGetInfo Cmd_ImpathKXBegin Cmd_ImpathKXFinish Cmd_ImpathReceive Cmd_ImpathSend	Support for Impath secure channel. Requires Feature Enabled.	Key agreement (KAS- FFC) Key derivation (KBKDF) Data encryption and decryption (AES CBC, GCM) MAC generation and verification (HMAC- SHA256)	KML, IMPATHKE, IMPATHKM	UC	G, E	return status OK
Key generation Generates a cryptographic key of a given type with a specified ACL. It returns a handle to the key. Optionally, it returns a KML signed certificate with the hash of the key and its ACL information.		Key generation (CKG, RSA, ECDSA, DSA) Digital signature generation (DSA)	KML, KA, DRBG entropy input, seed, internal state ('V' and 'C')	UC	G	return status OK
Key import Cmd_Import	module. If the module is		KA	UC	W	return status OK
1Derive Key Cmd_DeriveKey	Performs key wrapping, unwrapping, transport, exchange and derivation. The ACL needs to authorize this operation.	Key derivation (KBKDF) Key wrapping/unwrapping (KTS-AES) Key transport (KTS-IFC) Key agreement (KAS- FFC, KAS-ECC)	KA	UC	R, W	return status OK
Load Blob Cmd_LoadBlob	Load a Key blob into the module. It returns a handle to the key suitable for use with module services.	Key derivation (KBKDF) Key unwrapping (AES CBC and HMAC, KTS-IFC)	KA, KRE_BLOBKEY, KR, KM, KNSO BLOBKE, BLOBKM	UC	W E	return status OK
Load Logical Token Cmd_LoadLogicalToken	Initiates loading a Logical Token from Shares, which can be loaded with the Read Share command.	Key unwrapping Key derivation	-	UC	-	return status OK
Generate Logical Token Cmd_GenerateLogicalToken	Creates a new Logical Token with given properties and secret sharing parameters.	Key generation (CKG)	KM, LTx	UC	G, W	return status OK
Message digest Cmd_Hash	Computes the cryptographic hash of a given message.	Message digest (SHS, SHA-3)	-	UC	-	return status OK
Modular Exponentiation	Performs a modular exponentiation (standard or	-	-	UC	-	return status OK

Service	Description	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
Cmd_ModExp Cmd_ModExpCrt	CRT) on values supplied with the command.					
Cmd_RSAImmedVerifyEncrypt Cmd_RSAImmedSignDecrypt						
Module hardware information Cmd_ModuleInfo	Reports detailed hardware information.	-	-	UC	-	return status OK
No Operation Cmd_NoOp	No operation.	-	-	UC	-	return status OK
Change Share Passphrase Cmd_ChangeSharePIN Cmd_ChangeShareGroupPIN	Updates the passphrase of a Share.	Key derivation (KBKDF) Key wrapping/unwrapping (AES CBC and HMAC, KTS-IFC)	SHAREKEY, LTx, KM	UC	G, E, R, W	return status OK
NVRAM Allocate Cmd_NVMemAllocate	Allocation in NVRAM.	-	-	NSO	-	return status OK
NVRAM Free Cmd_NVMemFree	Deallocation from NVRAM.	-	-	UC	-	return status OK
Operation on NVM list Cmd_NVMemList	Returns a list of files in NVRAM.	-	-	UC	-	return status OK
Operation on NVM files Cmd_NVMemOp	Operation on an NVRAM file.	-	-	UC		return status OK
Key export Cmd_Export	Exports a key in plain text. Note: in approved mode, only public keys can be exported.	-	КА	UC	R	return status OK
Read file Cmd_ReadFile	Reads data from a file on a Smartcard or Softcard. The ACL needs to authorize this operation.	-	-	UC	-	return status OK
Read share Cmd_ReadShare	Reads a share from a Smartcard or Softcard. Once a quorum of shares have been loaded, the module re- assembles the Logical Token.	Key derivation (KBKDF) Key unwrapping (AES CBC and HMAC)	SHAREKEY, LTx, KM	UC	G, E, R	return status OK
Send share to remote slot Cmd_SendShare	Reads a Share and encrypts it with the Impath session keys for transmission to the peer module.	Data encryption(AES CBC, GCM) MAC generation (HMAC-SHA256)	IMPATHKE, IMPATHKM, SHAREKEY	UC	R, E	return status OK
Receive share from remote slot Cmd_ReceiveShare	Receives a Share encrypted with the Impath session keys by a remote module.	Data decryption (AES CBC, GCM)	IMPATHKE, IMPATHKM, SHAREKEY	UC	R, E	return status OK

Service	Description	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
		MAC verification (HMAC-SHA256)				
Redeem Ticket Cmd_RedeemTicket	Gets a handle in the current name space for the object referred to by a ticket created by Get Ticket.	-	-	UC	-	return status OK
Remote Administration Cmd_DynamicSlotCreateAssociation Cmd_DynamicSlotExchangeAPDUs Cmd_DynamicSlotsConfigure Cmd_DynamicSlotsConfigureQuery Cmd_VerifyCertificate	Provides remote presentation of Smartcards using a secure channel between the module and the Smartcard.	Key agreement (KAS- ECC ECDH) Key derivation (KBKDF) Data encryption and decryption (AES CBC) MAC generation and verification (AES CMAC) Digital signature verification (ECDSA)	RAKME, RAKMA, KWARN_pub	UC	G, E E	return status OK
Destroy Cmd_Destroy	Remove handle to an object in RAM. If the current handle is the only one remaining, the object is zeroised from RAM.	-	KA, KNSO, LTx	UC	Z	return status OK
Report statistics Cmd StatGetValues Cmd_StatEnumTree	Reports the values of the statistics tree.	-	-	UC	-	return status OK
Show Status Cmd_NewEnquiry	This is a Show Status and Show Module's Versioning Information service. Report status information.	-	-	UC	-	return status OK
Set ACL Cmd_SetACL	Replaces the ACL of a given key with a new ACL. The ACL needs to authorize this operation.	-	КА	UC	W	return status OK
Set key application data Cmd_SetAppData	Writes the application information field of a key.	-	KA	UC	W	return status OK
Set NSO Permissions Cmd_SetNSOPerms	Sets the NSO key hash and which permissions require a Delegation Certificate.	-	-	NSO	-	return status OK
Cmd_Sign MAC value.		MAC generation (HMAC, KMAC, AES CMAC) Digital signature generation (RSA, ECDSA, DSA)	KA, KNSO	UC	E	return status OK
Sign Module State Cmd_SignModuleState	Returns a signed certificate that contains data about the	Digital signature generation (DSA)	KML	UC	E	return status OK

Service	Description	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
	current configuration of the module.					
Signature verification Cmd_Verify	Verifies a digital signature or MAC value.	MAC verification (HMAC, KMAC, AES CMAC) Digital signature verification (RSA, ECDSA, DSA)	КА	UC	E	return status OK
Write file Cmd_WriteFile	Writes a file to a Smartcard or Softcard.	-	-	NSO	-	return status OK
Write share Cmd_WriteShare	Writes a Share to a Smartcard or Softcard.	Key derivation (KBKDF) Key wrapping (AES CBC and HMAC)	SHAREKEY, LTx, KM	UC	G, E, W	return status OK
SEE connection Cmd_CreateSEEConnection	Opens a connection from the nCoreAPI service to the SEE machine	-	-	UC	-	return status OK

Table 18 Approved Services

Non-approved services will fail with a return an error code indicator "StrictFIPS140".

All nCore API services are sent through the SSH channel, performing security functions Data encryption/decryption, MAC generation / verification and access E (execute) of the session keys KSESSION - SSH.

5 Software/Firmware security

The nShield 5s cryptographic module's executable code is delivered by Entrust as a single signed firmware package (.npkg file). The firmware integrity is verified at start up using RSA with 4096 bit key and SHA2-256. The Library Partition is an internal storage area that contains a number of auxiliary files required for operation of the module. The integrity of the Library Partition is verified using ECDSA with curve P-521 and SHA2-512.

Operators can initiate the integrity tests on demand by restarting the module.

6 Operational environment

Not applicable. The module has a limited operational environment, it is designed to accept only controlled firmware changes that successfully pass the software/firmware load test.

7 Physical security

The product is a multi-chip embedded Cryptographic Module, as defined in FIPS 140-3. It is enclosed in a hard and opaque epoxy resin which meets the physical security requirements of FIPS 140-3 level 3.

The cryptographic module implements Environmental Failure Protections (EFP) which detect out of range voltage and temperature and shuts down the module.

	Recommended Frequency of Inspection/Test	Inspection/Test Guidance Details
Hard and opaque epoxy	Monthly	The module should be inspected periodically for evidence of tamper attempts, including the entire enclosure including the epoxy resin security coating for obvious signs of damage.

Table 19 Physical Security Inspection Guidelines

	Temperature or voltage measurement	Specify EFP or EFT	Specify if this condition results in a shutdown or zeroisation
Low Temperature	2ºC	EFP	Shutdown
High Temperature	95ºC	EFP	Shutdown
Low Voltage	8V	EFP	Shutdown
High Voltage	14.08V	EFP	Shutdown

Table 20 EFP/EFT

	Hardness tested temperature measurement
Low Temperature	0ºC
High Temperature	95ºC

Table 21 Hardness testing temperature ranges

8 Non-invasive security

Not applicable.

9 Sensitive security parameters management

9.1 Keys and Sensitive Security Parameters

This section defines the Sensitive Security Parameters (SSPs) managed by the cryptographic module.

9.1.1 Platform SSPs

Key/SSP/Name/Type	Strength	Security Function and Cert. Number	Generation	Import/Export	Establishment	Storage	Zeroisation	Use & related keys
KRESET (CSP)	256 bits	Re-settable key <u>A3707</u>	DRBG	Never	n/a	MSP430 FRAM, in plaintext	factorystate	Key derivation
KUSER_SSH (CSP)	256 bits	Global SSH key encryption key AES-256 <u>A3707</u>	Derived at start-up using KBKDF from KRESET and other fixed parameters	Never	n/a	RAM, in plaintext	Power cycle	Encryption of all the service's server authentication SSH keys
KSSH_SETUP (CSP)	128 bits	Server authentication SSH key for the Setup service ECDSA P-256 A3707 A3706	DRBG	Private key: never Public key: output via SSHAdmin service	n/a	In Flash, encrypted with KUSER_SSH	n/a protected	SSH channel session
KSSH_UPDATER (CSP)	128 bits	Server authentication SSH key for the Updater service ECDSA P-256 A3707 A3706	DRBG	Private key: never Public key: output via SSHAdmin service	n/a	In Flash, encrypted with KUSER_SSH	n/a protected	SSH channel session
KSSH_SSHADMIN (CSP)	128 bits	Server authentication SSH key for the SSH Admin service ECDSA P-256 A3707 A3706	DRBG	Private key: never Public key: output via SSHAdmin service	n/a	In Flash, encrypted with KUSER_SSH	n/a protected	SSH channel session
KSSH_MONITOR (CSP)	128 bits	Server authentication SSH key for the Monitor service ECDSA P-256	DRBG	Private key: never Public key: output via	n/a	In Flash, encrypted with KUSER_SSH	n/a protected	SSH channel session

Key/SSP/Name/Type	Strength	Security Function and Cert. Number	Generation	Import/Export	Establishment	Storage	Zeroisation	Use & related keys
		<u>A3707</u> <u>A3706</u>		SSHAdmin service				
KSSH_LAUNCHER (CSP)	128 bits	Server authentication SSH key for the Launcher service ECDSA P-256 A3707 A3706	DRBG	Private key: never Public key: output via SSHAdmin service	n/a	In Flash, encrypted with KUSER_SSH	n/a protected	SSH channel session
KSESSION - SSH (CSP)	128 bits	SSH channel session keys AES GCM or AES CTR, HMAC <u>A3707</u>	n/a	Never	ECDH	RAM, in plaintext	Power cycle or channel closure	SSH channel data encryption and integrity
NSBIK pub (not an SSP)	128 bits	Bootloader public integrity key RSA 4096 bit <u>A2404</u>	Entrust	Import: Firmware update Export: Never	n/a	Flash, in plaintext	n/a	Firmware integrity test
NFIK pub (not an SSP)	128 bits	Firmware public signature verification key RSA 4096 bit <u>A2404</u>	Entrust	Import: Firmware update Export: Never	n/a	Flash, in plaintext	n/a	Firmware integrity test
NLIK pub (not an SSP)	256 bits	Library public integrity key ECDSA P-521 <u>A3707</u>	Entrust	Import: Firmware update Export: Never	n/a	Flash, in plaintext	n/a	Firmware integrity test
NPSK pub (PSP)	256 bits	Package public signature verification key ECDSA P-521 A3707	Entrust	Import: Firmware update Export: Never	n/a	Flash, in plaintext	n/a	Firmware loading test
ESK pub (PSP)	256 bits	Root Entrust SEE public signing key ECDSA P-521 <u>A3707</u>	Entrust	Import: Firmware update Export: Never	n/a	Flash	n/a	Signature verification
DSK pub (PSP)	256 bits	Developer public signing key ECDSA P-521	n/a	Launcher service ids commands	n/a	Flash	n/a	Signature verification

Key/SSP/Name/Type	Strength	Security Function and Cert. Number	Generation	Import/Export	Establishment	Storage	Zeroisation	Use & related keys
		<u>A3707</u>						
KSSH_CLIENT pub (PSP)	128 bits	Client authentication SSH key for each of the services (Updater, Setup, SSHAdmin, Launcher, nCoreAPI) ECDSA P-256, P- 521 A3707	Client side	Through SSHAdmin service	n/a	Flash, in plaintext	factorystate	SSH authentication credentials
DRBG entropy input (CSP)	> 256 bits	Platform DRBG <u>A3707</u>	520 bits from the approved Entropy Source.	Never	n/a	RAM, in plaintext	Power cycle	Random number generation
DRBG seed (CSP)	256 bits	Platform DRBG <u>A3707</u>	Generated as per SP 800-90Arev1 with 696 bits from the approved Entropy Source: 520 bits entropy input 176 bits random nonce	Never	n/a	RAM, in plaintext	Power cycle	Random number generation
DRBG internal state ('V' and 'C' values) (CSP)	256 bits	Platform DRBG <u>A3707</u>	Generated as per SP 800- 90Arev1.	Never	n/a	RAM, in plaintext	Power cycle	Random number generation

Table 22 Platform SSP table

nCore API service SSPs

9.1.1.1 Service SSPs

Key/SSP/Name/Type	Strength	Security Function and Cert. Number	Generation	Import/Export	Establishment	Storage	Zeroisation	Use & related keys
KCONTAINER (CSP)	256 bits	Master key for container <u>A3707</u>	Derived at start-up using KBKDF from KRESET, container-id and other fixed value.	Never	n/a	RAM, in plaintext	Power cycle	Key derivation
KCONTAINERSSH (CSP)	256 bits	Encryption key for KSSH_NCORE AES-256 A3707	Derived at start-up using KBKDF from KCONTAINER, and other fixed value.	Never	n/a	RAM, in plaintext	Power cycle	Encryption
KSSH_NCORE (CSP)	128 bits	Server authentication ssh key for the nCore API service ECDSA P-256 A3707 A3706	DRBG	Private key: Never Public key output via SSH Admin service	n/a	In Flash, encrypted with KCONTAINERSSH	n/a protected	SSH channel session

The following SSPs are related to the nCore API service.

Table 23 nCoreAPI SSP table

9.1.1.2 Security World SSPs

The following SSPs are related to the Security World in which the cryptographic module is enrolled into.

Key/SSP/Name/Typ e	Strengt h	Security Function and Cert. Number	Generatio n	Import/Expor t	Establishmen t	Storage	Zeroisation	Use & related keys
KRE_BLOBKEY (CSP)	128 bits	Recovery confidentialit y key RSA 3072 bit <u>A3707</u>	DRBG	Import: From key blob, decrypted with LTRE Export: in key blob, encrypted with LTRE	n/a	RAM, in plaintext	Power cycle or Cmd_Destro y	Key used to protect recovery keys (KR).
KR (CSP)	256 bits	Recovery key AES 256 <u>A3707</u>	DRBG	Import: From key blob, decrypted with KRE_BLOBKEY Export: in key blob, encrypted	n/a	RAM, in plaintext	Power cycle or Cmd_Destro y	Key used to derive (using SP 800- 108 KDF in counter mode) the keys Ke (AES 256-bit) and Km (HMAC-SHA256) that protect an archive copy of an application key.

Key/SSP/Name/Typ e	Strengt h	Security Function and Cert. Number	Generatio n	Import/Expor t	Establishmen t	Storage	Zeroisation	Use & related keys
				with KRE_BLOBKEY				
ІМРАТНКЕ ІМРАТНКМ	256 bits	Session keys for impath channel	n/a	Never	DH	RAM, in plaintext	Power cycle or channel closure	Encryption and decryption
(CSP)		<u>A3707</u>					closure	MAC generation and verification
KA (CSP)	≥ 112 bits	Application keys <u>A3707</u>	DRBG	Import: From key blob, decrypted with LTA or KR Export: in key blob, encrypted with LTA or KR	n/a	RAM, in plaintext	Power cycle or Cmd_Destro y	Application keys used for general purpose cryptographic services: Encryption and decryption Digital signature generation and verification MAC generation and verification Key derivation, key agreement
KM (CSP)	256 bits	Security World module key AES 256 <u>A3707</u>	DRBG	Import: From key blob, decrypted with LTM Export: in key blob, encrypted with LTM	n/a	Flash, in plaintext	factorystate or Initialize Unit	Key used for key derivation to protect logical tokens and associated module Key Blobs.
KML (CSP)	128 bits	Module Signing key DSA 3072 bit <u>A3707</u>	DRBG	Never	n/a		factorystate or Initialize Unit	Digital signature generation for key generation certificates and module state certificates.
KNSO (CSP)	128 bits	NSO key DSA 3072 bit <u>A3707</u>	DRBG	Import: From key blob, decrypted with LTNSO Export: in key blob, encrypted with LTNSO	n/a	RAM, in plaintext	Power cycle or Cmd_Destro Y	nShield Security Officer key used for NSO authorisation and Security World integrity

Key/SSP/Name/Typ e	Strengt h	Security Function and Cert. Number	Generatio n	Import/Expor t	Establishmen t	Storage	Zeroisation	Use & related keys
HKNSO (PSP)	160 bits	Hash of public KNSO <u>A3707</u>	n/a	Never	Security World creation		factorystate or Initialize Unit	nShield Security Officer key used for NSO authorisation and Security World integrity
BLOBKE BLOBKM (CSP)	256 bits	Key blob encryption and MAC key AES 256 HMAC- SHA256 A3707	n/a	Never	Derived from LTx	RAM, in plaintext	Power cycle	Key wrapping
LTx (CSP)	256 bits	Logical token for key x AES 256 <u>A3707</u>	DRBG	Import: From quorum of encrypted Shares using Shamir Secret Scheme Export: To encrypted Shares using Shamir Secret Scheme	From Shares using Shamir Secret Schee	RAM, in plaintext	Power cycle or Cmd_Destro y	Key derivation
SHAREKEY (CSP)	256 bits	Share encryption and MAC keys AES 256 HMAC- SHA256 A3707	n/a	Never	Derived from KM and other additional data	RAM, in plaintext	Power cycle	Protects a share when written to a smartcarc or softcard. This key is used to derive using KBKDF the keys Ke and Km used to wrap the share.
RAKME RAKMA (CSP)	256 bits	Session keys for remote admin channel AES 256 A3707	n/a	Never	ECDH		Power cycle or channel closure	Encryption and decryption MAC generation and verification
KAL (CSP)	128 bits	Audit logging key DSA 3072-bit <u>A3707</u>	DRBG	Never	n/a		factorystate or Initialize Unit	Digital signature generation of the audit trail.
KWARN pub (PSP)	256 bits	Entrust root warranting public key for Administrator Cards and Operator Cards ECDSA P-521	Entrust	Import: fw update Export: never	n/a	Flash, in plaintext , as part of the firmware image	n/a protected	Digital signature verification to authenticate remote cards.

Key/SSP/Name/Typ e	Strengt h		Generatio n	Import/Expor t	Establishmen t	Storage	Zeroisation	Use & related keys
		<u>A3707</u>						
DRBG entropy input (CSP)	256 bits	nCoreAPI DRBG <u>A3707</u>	520 bits from Platform DRBG	Never	n/a	RAM, in plaintext	Power cycle	Random number generation
DRBG seed (CSP)	256 bits	nCoreAPI DRBG <u>A3707</u>	Generated as per SP 800- 90Arev1 with 696 bits from Platform DRBG: 520 bits entropy input 176 bits random nonce	Never	n/a	RAM, in plaintext	Power cycle	Random number generation
DRBG internal state ('V' and 'C' values) (CSP)	256 bits	nCoreAPI DRBG <u>A3707</u>	Generated as per SP 800- 90Arev1.	Never	n/a	RAM, in plaintext	Power cycle	Random number generation

Table 24 Security World SSP table

As per IG 9.7.B, the zeroisation of SSPs is explicitly indicated by the successful return code of the setup factorystate command. Temporary SSPs are zeroised implicitly.

9.2 SSP zeroization methods

Zeroization of all unprotected SSPs keys occurs immediately when the module is reset to the factory state with the setup factorystate command.

9.3 Entropy sources

The cryptographic module has a hardware based true random number generator used to seed the DRBGs.

Entropy sources	Minimum number of bits of entropy	Details
nShield 5s Physical True Random Number Generator ESV <u>cert#38</u>	0.89 bits per output bit Minimum of 256 bits of entropy for DRBG seed (total seed size of 512 bits)	Hardware entropy source compliant with SP 800-90B. As per the <u>Public Use Document</u> , no configuration of the entropy source is required.

Table 25 Non-Deterministic Random Number Generation Specification

10 Self tests

The Cryptographic Module performs pre-operational, conditional and periodic self-tests. It also supports pre-operational self-tests on demand by resetting the module.

In the event of a self-test failure, the module enters the error state. While in this state, the module does not process any commands, and will indicate the error on the status LED and the error log, which can be retrieved with the command monitor getlog.

10.1 Pre-operational self tests

10.1.1 Integrity tests

At start up, the following integrity tests are performed:

- Firmware integrity is verified using RSA with 4096 bit key and SHA2-256.
- Library partition integrity, is verified using ECDSA with curve P-521 and SHA2-512.

10.2 Conditional self tests

10.2.1 Crypto self tests

The following cryptographic algorithm self tests (CASTs) are run before the first use of any cryptographic mechanism.

Algorithm	Description
	Bootloader crypto
SHA2-256	Known Answer Test
RSA	Known Answer Test (verification only) with 4096 bit key
	nCore crypto
AES ECB encrypt	AES ECB Known Answer Test encryption with 128, 192 and 256-bit keys
AES ECB decrypt	AES ECB Known Answer Test decryption with 128, 192 and 256-bit keys
AES CMAC	Known Answer Test: 128-bit key
SHA-1	SHA-1 Known Answer Test, other size are tested along with KAT HMAC
SHA-3	SHA3-224, SHA3-256, SHA3-384, SHA3-512 Known Answer Test
HMAC with SHA-1, SHA2-224, SHA2-256, SHA2-384, SHA2-512	Known Answer Test
RSA	Known Answer Test: sign/verify, encrypt/decrypt with 2048-bit key
	Pair-Wise consistency test: sign/verify
DSA	Known Answer Test: sign/verify with 2048-bit key
	Pair-Wise consistency test: sign/verify

Algorithm	Description
ECDSA	KAT test: sign/verify with curves P-224 and B-233
	Pair-Wise consistency test: sign/verify
KAS-FFC	Shared Secret Computation Known Answer Test DH
KAS-ECC	Shared Secret Computation Known Answer Test for ECDH with curves P-384 and B-233
One-step KDF	Known Answer Test with SHA2-256 auxiliary function
Two-step KDF	Known Answer Test with HMAC-SHA256 auxiliary function
KBKDF	Known Answer Test
DRBG	Health Tests according to SP 800-90Arev1 section 11.3
SSH crypto	
AES GCM encrypt	Known Answer Test encryption with 128 bit key
AES GCM decrypt	Known Answer Test decryption with 128 bit key
AES CTR encrypt	Known Answer Test encryption with 128 bit key
AES CTR decrypt	Known Answer Test decryption with 128 bit key
HMAC with SHA2-256 and SHA2-512	Known Answer Test
KAS-ECC	Shared Secret Computation Known Answer Test for ECDH with curve P-256
ECDSA	KAT test: sign/verify with curves P-256 and P-521
SSH KDF	SSH KDF Known Answer Test

10.2.2 SP 800-90B health tests

At start up, the SP 800-90B Adaptive Proportion Test and Repetition Count Test are run on the output bits of the entropy source.

These tests are also run continuously during operation of the entropy source.

10.2.3 Pair-wise consistency tests

The module performs a pair-wise consistency test when RSA, DSA, ECDSA, DH and ECDH keys are generated.

10.2.4 Firmware load test

Prior to updating the firmware, the cryptographic module validates the integrity and authenticity of the image update package.

The module performs the following actions before replacing the current image:

- Code signature verification with NPSK pub. The signature algorithm is ECDSA with SHA2-512 using the P-521 curve.
- Verification that the Version Security Number (VSN) of the new image is not less than the VSN of the current image. This check is done for roll-back protection.

Note: A firmware image version loaded into this module that is not shown on the module certificate is out of the scope of this validation and requires a separate FIPS 140-3 validation.

10.3 Periodic self tests

The following self tests are run periodically every 24 hours:

- nCore crypto and SSH crypto self tests
- SP 800-90B health tests

As per IG 10.3E Resolution #3 c), the bootloader is designed exclusively to launch the main firmware for the module. In this architecture, as the module isn't complete until the main firmware is launched (replacing the bootloader in executable memory), it is redundant that the bootloader itself implement a mechanism to run periodic tests.

11 Life-cycle assurance

This section provides specific FIPS-related guidance to Administrators and Operators. This guidance is aimed to complement the product user and installation guides which are delivered with the cryptographic module.

11.1 Delivery

The nShield cryptographic module is sent to the customers using a standard carrier service. After accepting the delivery of the module, a physical inspection of the module shall be performed (refer to Physical Security section). This inspection is done to ensure that the module has not been tampered with during transit. If the inspection results indicate that the module has not been tampered with, the Administrator can then proceed with installation and configuration of the module.

The cryptographic module supports firmware upgrades in the field, which are provided by Entrust as a single signed firmware package (.npkg file).

11.2 Cryptographic module identification

This section provides instructions to inspect the cryptographic module's fw and hw version information and ensure they correspond with the FIPS 140-3 validated versions.

11.2.1 FW identification

The cryptographic module provides the service updater info which provides firmware version information in JSON format.

Entrust provides the hsmadmin status command-line utility which calls the service updater info internally.

hsmadmin status --json

```
{
    "D5DE-E1F8-D6E7": {
        "succeeded": true,
        "data": {
            "mode": "primary",
            "primary-version": "13.4.5-751-56c6f1db",
            "recovery-version": "13.2.4-280-7f4f0c24",
            "uboot-version": "1.1.0-1245-b9bedfa"
        }
}
```

The following fields in the output must be checked:

Field	Expected value
primary-version	13.4.5-751-56c6f1db
recovery-version	13.2.4-280-7f4f0c24
uboot-version	1.1.0-1245-b9bedfa

11.2.2 HW identification

The cryptographic module provides the command Cmd_NewEnquiry which reports hardware version information.

Entrust provides the enquiry command-line utility which calls Cmd_NewEnquiry internally.

```
product name nC5536E
hardware part no PCA10005-01 revision 03
```

The following fields in the output must be checked:

Field	Expected value
product name	nC5536E or nC5536N
hardware part no	PCA10005-01 revision 03 or revision 04

Alternatively, the cryptographic module also provides the service setup info which provides hardware version information in JSON format.

Entrust provides the hsmadmin info command-line utility which calls the service setup info internally.

hsmadmin info --json

```
{
  "15C8-4387-C748": {
  "eeprom": {
   ...
  ,
  "buildpart":
   {   "value": "PCA10005-01", "crc": xxxxx }
  ,
  "buildrev":
   {   "value": "03", "crc": xxxxx }
  ...
  }
}
```

The following fields in the output must be checked:

Field	Expected value
buildpart	"value": "PCA10005-01"
buildrev	"value": "03" or "value": "04"

11.3 Approved mode of operation

When the cryptographic module is in factory state, it first needs to be initialized with the command line utility hsmadmin enroll.

To configure the cryptographic module in approved mode, create a FIPS 140-3 level 3 compliant Security World using Entrust supplied utility new-world and setting the mode to *fips-140-level-3*.

An operator can verify that the module is configured in approved mode with the command line utility enquiry, which reports the following active modes:

```
active modes UseFIPSApprovedInternalMechanisms AlwaysUseStrongPrimes FIPSLevel3Enforcedv2 StrictSP80056Ar3
```

or

```
active modes UseFIPSApprovedInternalMechanisms FIPSLevel3Enforcedv2
StrictSP80056Ar3
```

Once a FIPS 140-3 level 3 Security World is created, it is not possible to switch into a non-compliant mode without first zeroising the unprotected SSPs.

11.4 End of life

Per FIPS 140-3 section 7.11.8, in the event that the module is no longer deployed or intended for further use, the Crypto Officer shall zeroize and destroy the module. The module shall be taken to an electronics recycling facility that offers (and assures) the physical destruction of e-waste.

12 Mitigation of other attacks

Not applicable.

Contact Us

Web site	https://www.entrust.com
Support	https://nshieldsupport.entrust.com
Email Support	nShield.support@entrust.com
Online documentation:	Available from the Support site listed above.

You can also contact our Support teams by telephone, using the following numbers:

Europe, Middle East, and Africa	
United Kingdom:	+44 1223 622 444 One Station Square Cambridge CB1 2GA UK
Americas	
Toll Free:	+1 833 425 1990
Fort Lauderdale:	+1 954 953 5229 Sawgrass Commerce Center – A Suite 130, 13800 NW 14 Street Sunrise FL 33323 USA
Asia Pacific	
Australia:	+61 9126 9070 World Trade Centre Northbank Wharf Siddeley St Melbourne VIC 3005 Australia
Japan:	+81 50 3196 4994
Hong Kong:	+852 3008 4994 31/F, Hysan Place 500 Hennessy Road Causeway Bay Hong Kong

To get help with Entrust nShield HSMs

nShield.support@entrust.com nshieldsupport.entrust.com

ABOUT ENTRUST CORPORATION

Entrust keeps the world moving safely by enabling trusted identities, payments and data protection. Today more than ever, people demand seamless, secure experiences, whether they're crossing borders, making a purchase, accessing egovernment services or logging into corporate networks. Entrust offers an unmatched breadth of digital security and credential issuance solutions at the very heart of all these interactions. With more than 2,500 colleagues, a network of global partners, and customers in over 150 countries, it's no wonder the world's most entrusted organizations trust us.

