
Becrypt Ltd

Becrypt Cryptographic Library

FIPS 140-2 Non-Proprietary Security
Policy
12 October 2018 version 2.3

Page 2

Table of Contents

Introduction .. 4

Modes ... 4

Cryptographic Module Specification... 5

Cryptographic and Physical Boundaries .. 9

Module Ports and Interfaces .. 11

Roles, Services and Authentication ... 12

Identification and Authentication ... 12

Roles and Services ... 12

Physical Security .. 16

Cryptographic Key Management .. 17

Pre-loaded cryptographic keys ... 17

Run-time cryptographic keys .. 17

Memory Management .. 17

Zeroizing of Keys, CSPs and Sensitive Data ... 17

Self-Test .. 21

Crypto-Officer and User Guidance .. 23

Secure Setup and Initialization ... 23

Initialization of FIPS Modes in the 32/64 bit sub-module .. 23

Initialization of the 16-bit sub module. ... 24

Re-initialization ... 25

Module Security Policy Rules .. 25

NDRNG guidance ... 25

List of Tables

Table 1 Approved Algorithms in 32/64 bit sub-module ... 5

Table 2 Non-approved Algorithms in 32/64 bit sub-module .. 5

Table 3 Non-approved but Allowed Algorithms in 32/64 bit sub-module ... 6

Table 4 Approved Algorithms in 16 bit sub-module ... 7

Table 5 Test Platforms .. 7

Table 6 Security Requirement Levels .. 8

Table 7 Interface Table ... 11

Table 8 Roles and Services 32/64 bit module ... 12

Page 3

Table 9 Roles and Services 16 bit module... 14

Table 10 Pre-loaded cryptographic keys ... 17

Table 11 Key Management 32/64-bit sub module ... 18

Table 12 Key Management 16-bit sub module ... 20

Table 13 Self-Tests .. 21

Table 14 Minimum entropy requirements for key generation ... 26

List of Figures:

Figure 1 Block diagram of the cryptographic module ... 9

Figure 2 Physical Cryptographic Hardware for AES-NI .. 10

Figure 3 32/64-bit sub-module initialization - C fragment ... 24

Figure 4 16-bit sub-module initialization - MASM fragment .. 25

Page 4

Introduction

This document is the FIPS 140-2 non-proprietary Security Policy detailing how the Becrypt
Cryptographic Library software version 3.0/hardware version Intel Core i5-4300Y meets the Security
Level 1 requirements of FIPS 140-2. This security policy also describes how the library is to be used in
a secure manner to comply with FIPS 140-2 when compiled into applications.

FIPS 140-2 (Federal Information Processing Standards Publication 140-2) specifies the security
requirements for a cryptographic module protecting sensitive information. Based on four security
levels for cryptographic modules this standard identifies requirements in eleven sections. For more
information about the standard please visit csrc.nist.gov/groups/STM/cmvp/index.html.

In this document, the Becrypt Cryptographic Library is also referred to as “the module”.

For information about Becrypt Ltd. please visit www.becrypt.com

Modes

The 32/64 bit library may operate in one of two Approved modes of operation:

FIPS Mode 1: All defined approved and allowed algorithms enabled.

FIPS Mode 2: RSA algorithms which involve private keys are not enabled, all other
approved and allowed algorithms are enabled.

There is one Unapproved mode of operation for the 32/64 bit library in which the PRNG algorithm is
enabled and non-compliant AES keys are generated.

The 16 bit library has only a single Approved mode of operation and no Unapproved mode.

The 32/64 bit library is initialized to FIPS Mode 1 by default. To specify the mode a parameter that
requests a set of desired algorithms is passed as a parameter. The most appropriate mode for the
requested algorithms is selected.

http://csrc.nist.gov/groups/STM/cmvp/index.html
http://www.becrypt.com/

Page 5

Cryptographic Module Specification

The Becrypt Cryptographic Library is a software-hybrid module providing core cryptographic
functionality for software applications. This document describes software version 3.0 and hardware
version Intel Core i5-4300Y of this module.

The module comprises two software sub-modules: a 32/64-bit sub-module supporting all the
functionality, and a 16-bit sub-module for use in Intel Real-Mode environments supporting a subset
of the functionality.

The module supports the following FIPS approved and non-approved algorithms:

Table 1 Approved Algorithms in 32/64 bit sub-module

Algorithm Implementation details Certificates

AES (FIPS 197) CBC, ECB, CTR, OFB Mode
128, 192, 256 Key length

#2883

AES Key Wrap (SP
800-38F)

128, 192, 256 Key length.
The key establishment methodology provides between 128
and 256 bits of encryption strength.

#2883

RSA (FIPS 186-4) ANSI X9.31 (Sig Ver);
PKCS v1.5 (Sig Ver);
Modulus sizes 2048 and 3072 bits with SHA-256.

 #1516

ANSI X9.31 (Sig Ver);
PKCS v1.5 (Sig Ver);
Modulus sizes 2048 and 3072 bits with SHA-1.

 #1516
Allowed in
FIPs mode for
legacy
systems only

ANSI X9.31 (Sig Ver);
PKCS v1.5 (Sig Ver);
Modulus size 1024 bits.

 #1516
Allowed in
FIPs mode for
legacy
systems only

RSA (FIPS 186-4) FIPS 186-4 Key Gen using probable primes with conditions
(B.3.6)
ANSI X9.31 (Sig Gen);
PKCS v1.5 (Sig Gen);
Modulus sizes 2048 and 3072 bits with SHA-256.

 #1516

HMAC (FIPS 198-1) SHA-1, SHA-256

#1817

Random Bit
Generators
(SP800-90A)

CTR_DRBG using AES

#520

SHS (FIPS 180-4) SHA-1, SHA-256

#2423

Note: Shaded (olive green) RSA algorithm row above is not used in FIPS Mode 2.

Table 2 Non-approved Algorithms in 32/64 bit sub-module

Page 6

Algorithm Implementation details Certificates

Random Number
Generators

ANS X9.31 PRNG
(No longer allowed in Approved mode and has been moved
to the RNG Historical Validation List)

#1285

AES (non-
compliant)

CBC, ECB, CTR, OFB Mode
128, 192, 256 Key length
(keys generated by PRNG)

Table 3 Non-approved but Allowed Algorithms in 32/64 bit sub-module

Algorithm Implementation details

RSA (FIPS 186-4) Public key operations for key establishment.
The key establishment methodology provides 112 or 128 bits
of encryption strength.
Modulus sizes 2048 and 3072 bits. The encryption strength
depends on the size of the modulus; a 3072-bit RSA key is the
minimum required to protect an AES-128 key.

RSA Key Wrapping
(FIPS 186-4: OAEP,
PKCS#1 v1.5)

(wrap operations)
The key establishment methodology provides between 112
and 150 bits of encryption strength.
Any key length which is an integer multiple of 256 from 2048
to 4096. The encryption strength depends on the size of the
modulus; a 3072-bit RSA key is the minimum required to wrap
an AES-128 key.

RSA (FIPS 186-4) Private key operations for key establishment.
The key establishment methodology provides 112 or 128 bits
of encryption strength.
Modulus sizes 2048 and 3072 bits. The encryption strength
depends on the size of the modulus; a 3072-bit RSA key is the
minimum required to protect an AES-128 key.

RSA Key Wrapping
(FIPS 186-4: OAEP,
PKCS#1 v1.5)

(unwrap operations)
The key establishment methodology provides between 112
and 150 bits of encryption strength.
Any key length which is an integer multiple of 256 from 2048
to 4096.

NDRNG Non-deterministic random number generator for passively
seeding the PRNG and DRBG via an application through an
API. The module enforces the minimum amount of entropy &
returns an error/exception if it doesn't receive it.

Note: Shaded RSA algorithm rows above are not used in FIPS Mode 2.

RSA modulus encryption strengths are taken from Table 2 of NIST SP800-57 Part 1 Rev 3.

Page 7

Table 4 Approved Algorithms in 16 bit sub-module

Algorithm Implementation details/related standard Certificates

AES (FIPS 197) CBC, ECB Mode
128, 192, 256 Key length

 #2885

AES Key wrap (SP
800-38F)

128, 192, 256 Key length.
The key establishment methodology provides between 128
and 256 bits of encryption strength.

#2885

HMAC (FIPS 198-1) SHA-256

#1819

SHS (FIPS 180-4) SHA-1, SHA-256

#2426

A module may not generate keys in a non-Approved mode of operation and then switch to an
Approved mode of operation and use the generated keys for Approved services and vice versa.
The module is implemented in software as an object file that can be linked with other software in
order to execute on a general purpose computer (GPC) with either Intel x86/x64 compatible
processors or ARM v6 (or above) compatible processors. The module is embodied as multiple-chip
standalone. The test environments against which the module was tested were:

Table 5 Test Platforms

Hardware
Architecture

Operating System Exact specification of test platform

Intel x86 16 bit
real mode

MS-DOS 6.22 Fujitsu LifeBook S7020 laptop with Intel Pentium
M 740 processor

Intel x86 Microsoft Windows 7
Ultimate Edition

Dell D630 with Intel Centrino Duo processor

Intel x64 Microsoft Windows 7
Enterprise Edition

Dell Vostro 1500 with Intel Centrino Duo
processor

Intel x64 AES-NI Microsoft Windows 8.1
Professional

Dell Venue 11 Pro (7130) with Intel Core i5-4300Y
(AES-NI) processor

Intel x86 Ubuntu Linux 12.04 LTS Dell D630 with Intel Centrino Duo processor

Intel x64 Ubuntu Linux 12.04 LTS Dell Vostro 1500 with Intel Centrino Duo
processor

ARM v6 Android v4.2.2 Google Nexus 7 (2012) with NVidia Tegra 3
processor

The vendor confirmed not-tested platforms supported by the tested module are as follows.

• Microsoft Windows XP and above; Intel x86 (32 bit) and x86-64 compatible processors
(with and without AES-NI) on platforms supporting PE object format;

Page 8

• ARM Architecture v6 and above compliant processor platforms supporting the ELF
object format;

• Other Intel x86/x64 platforms supporting the ELF object format.

The module continues validation compliance by recompilation as per section G.5 ‘Maintenance
validation compliance of software or firmware cryptographic modules’ subsection 1 c) of the FIPS
140-2 Implementation Guidance.

The CMVP makes no statement as to the correct operation of the module or the security strengths
of the generated keys when so ported if the specific operational environment is not listed on the
validation certificate.

The product meets the overall requirements applicable to FIPS 140-2 level 1.

Users of the library should review transition tables in SP 800-131A and on the CMVP Web site at
http://csrc.nist.gov/groups/STM/cmvp/. The data in the tables informs users of the risks associated
with using a particular algorithm and a given key length.

Table 6 Security Requirement Levels

Security Requirements Section Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles and Services and Authentication 1

Finite State Machine Model 1

Physical Security 1

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 1

Mitigation of Other Attacks NA

Overall Level of Validation 1

http://csrc.nist.gov/groups/STM/cmvp/

Page 9

Cryptographic and Physical Boundaries

The boundaries of the module with respect to FIPS 140-2 cover the physical cryptographic boundary
which is the General Purpose Computer (GPC) on which the module is executing and the logical
cryptographic boundary of the module itself.

CPU

Memory
Disk Drive

16 bit

Logical Boundary

General Purpose Computer

Physical Boundary

POWER

KEYBOARD PORT

NETWORK PORT
MONITOR PORT

MOUSE PORT

SYSTEM BUS

I/ O Ports
USB PORT

32/64
bit

Application

Figure 1 Block diagram of the cryptographic module

Figure 1 illustrates the components related to, and included within, the physical cryptographic
boundary of the module. The 16 and 32/64-bit subcomponent objects are illustrated as logical
components of an application.

The physical cryptographic boundary includes all the module components within the logical
boundary as well as the hardware components of the computing platform the module is installed on
which include:

• CPU
• System Bus
• Disk drive
• Memory
• I/O Ports

The hardware component portion of the hybrid cryptographic module is the Intel Core i5-4300Y
processor (See Table 6). The processor utilizes AES-NI instruction set implemented in the device for
support of the AES algorithm and all the AES related services found in the Roles and Services Tables.

Page 10

Figure 2 Physical Cryptographic Hardware for AES-NI

The logical cryptographic boundary includes all the software sub-components portion of the hybrid
cryptographic module which include:

• 32/64 bit cryptographic object
o libfipscore.a on Linux / Android / Unix
o fipscore.lib on Microsoft Windows / UEFI

• 16 bit cryptographic object
o Becrypt.lib

The 32/64 bit sub-module has a number of distinct platform-related logical embodiments. For
example, there are distinct versions of fipscore.lib for 64-bit Windows and 32-bit Windows; these
versions can be used on the corresponding UEFI environments, but are distinct from those built for
Linux 32 and 64, and also for ARM. All versions are built from identical source code, however.

Page 11

Module Ports and Interfaces

The 32/64-bit cryptographic module is a single-threaded software-hybrid module which interfaces
only with other software. The only physical ports are those of the general purpose computer (GPC)
on which it is executing.

The logical interface is an application program interface (API) with C language bindings for the 32 /64
bit sub component and assembler language binding for the 16 bit sub component.

Note that the module must be initialized, by calling the Initialization defined entry point, before any
interfaces can be used. No cryptographic interfaces are available until the initialization has taken
place. The Initialization API is the module Defined Entry Point for the purposes of FIPS.

Table 7 Interface Table

Interface type manifests as (Logical Interfaces) Maps to GPC physical interfaces

Data input API function input parameters Keyboard port, Mouse port,
Network port, USB port, optical
drive, floppy drive

Data output API function output parameters Network port, USB port, optical
drive, floppy drive

Control input API function name and control
parameters

Keyboard port, Mouse port,
Network port, USB port, optical
drive, floppy drive

Status output API function return status and
status parameters

PC monitor

In addition to the API interfaces by which applications request service, there are some call-back
interfaces (also part of the API) which might be regarded as logical ports. These are:

• RSA private key operation call-back: optional external functions called by the module to
perform RSA private key operations when the private key is held externally, e.g. on a smart
card.

• Entropy input call-backs: external functions called by the module to obtain entropy of
various strengths for use in DRBG seeding, cryptographic padding and probabilistic primality
testing.

• Allocator call-backs: external functions providing memory allocation and memory releasing
services for the module.

These have equivalent interface types; the cryptographic module supplies the control and data input
and responds to the status and data output. The API restricts the information flowing across this
interface to the minimum required for the correct operation of the call. The implementation of such
call-backs is outside of the scope of this document; however, FIPS-compliant applications providing
such call-back implementations must ensure they use only approved cryptographic functionality.

Page 12

Roles, Services and Authentication

The module supports a crypto officer (CO) role and a user role. The crypto officer and user may be
different operators or they may be the same operator performing role-specific module operations.
Both the crypto officer and user roles are implicitly assumed. The crypto officer role is implicitly
assumed by the operator configuring the module for use at installation time. Crypto officer
operations consist of configuring the GPC in single user mode and installing and building applications
that use the cryptographic module.

Identification and Authentication

Multiple concurrent operators are not allowed as the module is restricted to single user operation.
Operators may change roles while operating the module. The module does not support
authentication of the module roles. Becrypt policy concerning the use of the module can be stated
thus:

• Operating System administrative privileges are required for an application containing the
module to be installed or uninstalled (by the Crypto Officer).

• Once installed, unattended use of the module may continue without further authentication.

Roles and Services

The module supports the services listed in the table below, which identifies the Roles, Cryptographic
Keys and CSPs associated with the services. The User role has access to all the services of the module
of the CO with the exception of initialization with self tests.

The modes of access are also identified per the explanation.

R - The item is read or referenced by the service (input parameter).

W - The item is written or updated by the service (output parameter).

E - The item is executed by the service. (The item is intrinsic to the cryptographic module.)

Note all Cryptographic keys and CSPs of all modes of access are held in volatile memory.

Table 8 Roles and Services 32/64 bit module

Service Role Cryptographic keys and CSPs Access Type

Install Crypto
Module

CO Becrypt corporate RSA public key R

Uninstall Crypto
Module

CO None

Initialization CO
User

See keys involved in Crypto Algorithm Tests and
Software Integrity Tests

Crypto Algorithm
Tests

CO
User

AES known answer test keys
RSA public and private known answer test keys
HMAC known answer test key
DRBG known answer test
PRNG known answer test seed key

E
E
E
E
E

Page 13

Service Role Cryptographic keys and CSPs Access Type

Software Integrity
Test

CO
User

HMAC integrity test key E

Show Status CO
User

None

AES Key Generation CO
User

AES key (plaintext internal format) [DRBG]
AES Seed Key (plaintext) [DRBG]
DRBG V [DRBG]

W
R
W

AES Key Creation CO
User

AES key (plaintext) [DRBG]
AES key (plaintext internal) [DRBG]

R
W

AES Encrypt /
Decrypt

CO
User

AES data encryption key (plaintext internal
format) [DRBG]

R

AES Key Wrap CO
User

AES key encryption key (plaintext external
format)
AES data encryption key (plaintext external
format)
AES data encryption key (encrypted)

R

R

W

AES Key Unwrap CO
User

AES key encryption key (plaintext external
format)
AES data encryption key (plaintext external
format)
AES data encryption key (encrypted)

R

W

R

RSA Key Creation CO
User

RSA public key (plaintext internal format) W
RSA key pair (plaintext external format)
RSA key pair (plaintext internal format)

W

RSA Key Generation CO
User

RSA private/public key (plaintext external
format)

W

RSA Sign CO
User

RSA private key (plaintext internal format) R

RSA Verify CO
User

RSA public key (plaintext internal format) R

RSA Key Wrap CO
User

RSA public key (plaintext internal format) R

RSA Key Unwrap CO
User

RSA private key (plaintext internal format) R

SHA-1 Message
Digest

CO
User

None

SHA-256 Message
Digest

CO
User

None

HMAC-SHA-1 Keyed
Hash

CO
User

HMAC SHA-1 key (plaintext external format) R

HMAC-SHA-256
Keyed Hash

CO
User

HMAC SHA-256 key (plaintext external format) R

DRBG random
number service

CO
User

V, Key None

Memory Allocator
services (Non-
Crypto)

CO
User

None

Integrity Diagnostic CO
User

HMAC integrity test key E

Page 14

Service Role Cryptographic keys and CSPs Access Type

Memory services
(set, copy, compare)
(Non-Crypto)

CO
User

None

Structure validation
services
(Non-Crypto)

CO
User

None

Module
configuration

CO
User

None

Zeroization (see
Table 12 for details)

CO
User

AES data encryption key
AES key encryption key
RSA public key
HMAC SHA-1 key
HMAC SHA-256 key
DRBG key values

W

RSA key pair W
PRNG random
number service

CO
User

Seed, Key None

AES Key Generation CO
User

AES key (plaintext internal format) [PRNG]
AES Seed Key (plaintext) [PRNG]
PRNG ‘V’ value [PRNG]

W
R
W

AES Key Creation CO
User

AES key (plaintext) [PRNG]
AES key (plaintext internal) [PRNG]

R
W

AES Encrypt /
Decrypt

CO
User

AES data encryption key (plaintext internal
format) [PRNG]

R

Zeroization (see
Table 12 for details)

CO
User

AES data encryption key (generated by PRNG)
AES key encryption key (generated by PRNG)
PRNG key values

W

Note: All service rows above are used in FIPS Mode 1 except shaded (orange) rows which are only
used in non-Approved mode. Shaded (olive green) RSA service rows above are not used in FIPS
Mode 2.

Table 9 Roles and Services 16 bit module

Service Role Cryptographic keys and CSPs Access Type

Install Crypto
Module

CO Becrypt corporate RSA public key R

Uninstall Crypto
Module

CO None

Initialization CO
User

See keys involved in Crypto Algorithm Tests and
Software Integrity Tests

Crypto Algorithm
Tests

CO
User

AES known answer test keys
HMAC known answer test key

E

Software Integrity
Test

CO
User

HMAC integrity test key E

AES Key Creation CO
User

AES key (plaintext)
AES key (plaintext internal)

R
W

Page 15

Service Role Cryptographic keys and CSPs Access Type

AES Encrypt /
Decrypt

CO
User

AES data encryption key (plaintext internal
format)

R

AES Key Wrap CO
User

AES key encryption key (plaintext external
format)
AES data encryption key (plaintext external
format)
AES data encryption key (encrypted)

R

R

W

AES Key Unwrap CO
User

AES key encryption key (plaintext external
format)
AES data encryption key (plaintext external
format)
AES data encryption key (encrypted)

R

W

R

SHA-1 Message
Digest

CO
User

None

SHA-256 Message
Digest

CO
User

None

HMAC-SHA-256
Keyed Hash

CO
User

HMAC SHA-256 key (plaintext external format) R

Zeroization (see
Table 13 for details)

CO
User

AES data encryption key
AES key encryption key
HMAC SHA-256 key

W

Page 16

Physical Security

The module is a software-hybrid library and is a multi-chip standalone cryptographic module with
the physical security being that of the GPC it is executing on. The module is contained in a hard
plastic and metal enclosure which is defined as the cryptographic physical boundary of the module.
The module’s enclosure is opaque within the visible spectrum. The enclosure of the module has
been designed to satisfy Level 1 physical security requirements.

Page 17

Cryptographic Key Management

This section describes how cryptographic keys are managed by both the 16-bit and the 32/64-bit
cryptographic sub-modules. Pre-loaded keys are discussed separately from run time cryptographic
keys, even though the former are effectively run-time keys which are not zeroized at runtime.

Pre-loaded cryptographic keys

The following keys are preloaded during the manufacturing process into the binary. They are
zeroized by re-formatting the HDD on which the executable containing the library resides.

Table 10 Pre-loaded cryptographic keys

Description Key type Used

32/64-bit sub module

Integrity
Check Key

32-byte HMAC-SHA256 key Key used for approved integrity checking technique
used for checking the integrity of the 32/64-bit
cryptographic sub-module binaries.

16-bit sub-module

Integrity
Check Key

64-byte HMAC-SHA256 key Key used for approved integrity checking technique
used for checking the integrity of the 16-bit
cryptographic sub-module binaries.

Run-time cryptographic keys

The following tables describe how keys generated or established at run-time are handled by the
module. The 32/64-bit and 16-bit sub-modules are described in distinct tables.

Memory Management

At run-time, the 32/64-bit sub-module has no writable memory of its own where key values and
CSPs can be stored between calls to the module; of necessity, key values and CSPs are held in
volatile memory supplied by the caller. Depending on the operation in question, this may be in a
buffer directly provided by the caller (e.g. on the stack or the heap), or in memory indirectly
provided (normally on the heap) by use of a caller-provided 'allocator' call-back structure. This
contains pointers to functions which can respond to memory allocation and freeing requests issued
by the sub-module. The sub-module expects newly-allocated memory to be set to all zeroes, but
takes responsibility for zeroizing sensitive values prior to freeing them.

The 16-bit sub-module has its own volatile writable memory where it maintains internal forms of
Keys and hash contexts.

Zeroizing of Keys, CSPs and Sensitive Data

Unless otherwise stated in the table, the caller of either sub-module is responsible for zeroizing all
key values and CSPs after use, using mechanisms appropriate to each item to be zeroized.

Page 18

When a relevant zeroizing API call is available such as with HMAC keys, that call must be used.
Otherwise, zeroizing must be performed by writing a known value (usually 0) to all the bytes of the
data/key buffer. The 32/64-bit sub-module provides a function fips_memset_ext() while the 16-bit
sub-module provides a function Blank_Key which may be used for this purpose. (The standard
memset() is not safe to use for this purpose as it may be optimized away by the compiler.)

Table 11 Key Management 32/64-bit sub module

Key type and
length

Generation Input Output Zeroization Storage

AES Key

128, 192, 256 bit

Either using
NIST SP800-
90A DRBG
[Approved
mode]

Or using ANS
X9.31 PRNG
[legacy use,
non-approved
mode]

Electronic
Input by
API,
plaintext

Electronic
Output by
API,
plaintext

Caller
Responsible
to call
fips_memset
_ext()

Volatile Memory,
plaintext

RSA Keys or Key
Pair [FIPS 186-4]

2048, 3072 bits

FIPS 186-4
section B3.6

Electronic
Input by
API,
plaintext

Electronic
Output by
API,
plaintext

Caller
Responsible
to call
fips_memset
_ext()

Volatile Memory,
plaintext

RSA Keys or Key
Pair [FIPS 186-4:
OAEP, PKCS#1
v1.5]

2048 to 4096
bits

FIPS 186-4
section B3.6

Electronic
Input by
API,
plaintext

Electronic
Output by
API,
plaintext

Caller
Responsible
to call
fips_memset
_ext()

Volatile Memory,
plaintext

RSA Public Key
[FIPS 186-4]

2048, 3072 bits

N/A Electronic
Input by
API,
plaintext

Electronic
Output by
API,
plaintext

Caller
Responsible
to call
fips_memset
_ext()

Volatile Memory,
plaintext

RSA Public Key
[FIPS 186-4:
OAEP, PKCS#1
v1.5]

2048 to 4096
bits

N/A Electronic
Input by
API,
plaintext

Electronic
Output by
API,
plaintext

Caller
Responsible
to call
fips_memset
_ext()

Volatile Memory,
plaintext

Page 19

Key type and
length

Generation Input Output Zeroization Storage

RSA Public Key
[FIPS 186-4]

1024 bits

N/A Electronic
Input by
API,
plaintext

Electronic
Output by
API,
plaintext

Caller
Responsible
to call
fips_memset
_ext()

Volatile Memory,
plaintext

HMAC Key

(SHA-1) 25, 40,
64, 72, 100 bytes

(SHA-256) 16,
30, 64, 80, 128
bytes

N/A Electronic
Input by
API,
plaintext

N/A Caller
Responsible
to call HMAC
finish API

Volatile Memory,
plaintext

DRBG V

256, 320, 384 bit

N/A Electronic
Input by
API,
plaintext

N/A Caller
Responsible
to call
fips_memset
_ext()

Volatile Memory,
plaintext

DRBG CTR Key

128, 192, 256 bit

N/A Electronic
Input by
API,
plaintext

N/A Caller
Responsible
to call
fips_memset
_ext()

Volatile Memory,
plaintext

DRBG
Personalisation
String

Any length

N/A Electronic
Input by
API,
plaintext

N/A Zeroized
upon HDD
re-format.

Volatile Memory,
plaintext

Entropy input
string

N/A Electronic
Input by
API,
plaintext

N/A Caller
Responsible
to call
fips_memset
_ext()

Volatile Memory,
plaintext

DRBG nonce N/A Electronic
Input by
API,
plaintext

N/A Caller
Responsible
to call
fips_memset
_ext()

Volatile Memory,
plaintext

Page 20

Key type and
length

Generation Input Output Zeroization Storage

DRBG Additional

Any length

N/A Electronic
Input by
API,
plaintext

N/A Zeroized
upon HDD
re-format.

Volatile Memory,
plaintext

Integrity Check
Key

(32-byte HMAC-
SHA256 key)

N/A Preloaded
during the
manufactu
ring
process
into the
binary

N/A Zeroized
upon HDD
re-format.

Volatile Memory,
plaintext

Note: All CSP rows above are used in FIPS Mode 1. Shaded RSA CSP rows above (olive green) are not
used in FIPS Mode 2.

Table 12 Key Management 16-bit sub module

Key type and
length

Generation Input Output Zeroization Storage

AES Key

128, 192, 256 bit

N/A Electronic
Input by
API,
plaintext

Electronic
Output by
API,
plaintext

Caller
Responsible
to call
Blank_Key

Volatile Memory,
plaintext

HMAC Key

(SHA-256) 64
bytes

N/A Electronic
Input by
API,
plaintext

N/A Caller
Responsible
to call HMAC
clear key API

Volatile Memory,
plaintext

Integrity Check
Key

(64-byte HMAC-
SHA256 key)

N/A Preloaded
during the
manufactu
ring
process
into the
binary

N/A Zeroized
upon HDD
re-format.

Volatile Memory,
plaintext

Page 21

Self-Test

The cryptographic module performs an integrity check of the module at power up and performs a
set of known answer tests (KAT) of the cryptographic algorithms as listed in the table below. If FIPS
Mode 1 is enabled then all KATs are executed. If FIPS Mode 2 is enabled the RSA KATs are not
executed. The KATs are executed at power up or on demand. The KATs can be performed against all
FIPS approved algorithms or a subset can be selected (i.e. for FIPS Mode 2).

The failure of the integrity test of one or more KATs is indicated by a non-zero status output at
power-up or a zero status when running individual KATs after power-up. The failure of any of the
run-time conditional tests is indicated by a non-zero status output from the relevant service.

In the event of a failure of a KAT the module will not perform cryptographic operations for that
specific approved algorithm; this affects all services which use that algorithm, which will indicate this
by a specific non-zero status output. If a subset of algorithms is tested those algorithms untested
are deemed to have failed the KAT and will not perform cryptographic operations. The failure of the
integrity test causes a non-zero status output for all cryptographic services.

Once the module has entered a failure state it must be re-initialized and self-tests re-run before
cryptographic operations are available. The 16-bit sub-module can be re-initialized by a successful
call to its IInit_Library service. The 32/64-bit sub-module cannot be re-initialized except by re-
loading of the containing executable (i.e. effectively creating and initializing a new instance of the
sub-module).

Table 13 Self-Tests

Test Type Actions Performed

Critical Functions Tests Power up Performed as part of the GPC initialization and
operation, e.g. RAM Power-On Self-Test (POST) at
boot time, and persistent storage (hard drive) sector
check-sum tests.

Module integrity test Power up Performed when the module is initialized for use in
FIPS mode. A HMAC-SHA-256 of the cryptographic
module is performed to verify its integrity for both
the 16-bit and 32/64-bit cryptographic objects.

Known Answer Tests Power up Performed when the module is initialized for use.

For the 32/64-bit cryptographic object the following
tests are performed in initialization: AES
(Encrypt/Decrypt/Key Wrap), SHA-1, SHA-256,
HMAC-SHA-256, RSA (FIPS 186-4 Signature
Generation/Verification and Key Pair Generation),
PRNG.

FIPS Mode 2 initialization omits the RSA FIPS 186-4
Signature Generation and Key Pair Generation tests
and marks them as unavailable for use.

Page 22

For the 16-bit cryptographic object the following
tests are performed: SHA-1, SHA-256, HMAC-SHA-
256, AES (Encrypt/Decrypt/Key Wrap).

DRBG health tests Instantiation DRBG health checks according to Section 11.3 of
SP800-90A.

Instantiate and Generate function tests are
performed at every instantiation following power-up;
an error is returned on failure, and the instance
handle is invalid. Since the Generate function tests
cover both PR and no-PR cases, the Reseed function
is not tested separately at instantiation.

Explicit tests for the Instantiate, Generate and
Reseed functions may be invoked on a healthy
instance; failure makes the instance 'unhealthy' -
unusable except for uninstantiation.

The Uninstantiate function is tested whenever the
above function tests are performed.

Failures of the entropy and/or nonce input functions
also cause an instance to become unhealthy. This
behaviour is tested as part of the Instantiate test.

The built-in interval for testing the Generate()
function is identical to the interval between
operational instantiations; long-running applications
should explicitly test the Generate function on an
instance at least once an hour if no new instance has
been created in that time.

Key generation
Conditional test

Conditional Tests generated entropy data against the previous
block generated for the PRNG and DRBG, rejecting if
the same. During power-up test, a fixed seed value
(PRNG-based key generation) and a fixed-output
"test DRBG" (DRBG-based key generation) are used
to force a failure of this test to ensure that it is
operating as required.

RSA Pair wise
consistency test

Conditional Performs pair wise consistency test each time RSA
keys are generated for key wrap, signature
generation/verification. (FIPS Mode 1 only; although
RSA public keys may be used in FIPS mode 2, there is
no private key available against which to perform this
test.)

Page 23

Crypto-Officer and User Guidance

This section describes the configuration, maintenance, and administration of the cryptographic
module.

Secure Setup and Initialization

The module must be validated and initialized by successful completion of self tests as documented in
the section entitled Self-Test above. The self tests must be performed as part of the module
initialization and can also be performed on demand by either COs or Users.

The steps to securely initialize the module are as follows:

• Install the module on the target platform (CO only)
• Initialize the required sub-modules: for the 32/64-bit sub-module use fipsCoreInit(); for

the 16-bit sub-module use Crypto_Library specifying the service IInit_Library.

fipsCoreInit() and Crypto_Library are the Default Entry Points (DEP) for the respective sub-
modules. If successfully initialized, both functions return a 0 status value and access to the
cryptographic functionality of the sub-module is enabled; otherwise a non-zero error status is
returned and access to the cryptographic functionality is denied.

Initialization of FIPS Modes in the 32/64 bit sub-module

The 32/64-bit sub-module may be initialized into one of two modes, depending on the algorithms
required by the program acting on behalf of the CO/User.

FIPS Mode 1 makes all the approved and allowed algorithms available; FIPS Mode 2 is intended for
use where RSA-2 private key functionality is not required, which significantly reduces the time spent
in power-up self-test.

The first argument to the fipsCoreInit() function is a pointer to a structure which is used to
configure the library for use. (The remaining function arguments must be valid for initialization to
succeed but do not otherwise affect the configuration.)

The important points for module initialization are:

• correct initialization of the fipscore_config structure;
• provision of an allocator;
• provision of a location in which to place the service table pointer on success;
• checking the return status of fipsCoreInit(), the module's Defined Entry Point.

The following C code fragment illustrates how FIPS MODE 2 may be selected in a user-mode
program:

Page 24

The code fragment in Figure 2 is intended for illustrative purposes only; names of variables may
differ, and calls to ASSERT() and exit() are not required and in any case would need extra header files
to be included. FIPS_USING_MODE_2 and FIPS_MODE_2 are macros representing integer constants
and are defined via fipscore.h. What makes this example 'user-mode' is the use of calloc() and free()
for memory allocation; a kernel program would use equivalent kernel functions.

In the example, the coreAccess variable is defined at file scope so that, once the library is initialized,
any part of the program may use it; this scope is not required, but any part of the application
needing access to the module services must have a means to get its value.

To request FIPS Mode 1, config.algs should be set to either 0 or the macro constant
FIPS_USING_MODE_1.

Initialization of the 16-bit sub module.

The MASM code fragment in Figure 3 illustrates how the 16-bit sub-module may be initialized.

#include "fipscore.h"

const struct fipscore_functions * coreAccess = 0;
 /* Pointer to cryptographic service function table */

{
 struct fips_allocator alloc = { calloc, free };
 /* User-mode allocator used during initialization */

 struct fipscore_config config = {}; /* initialize config to zeroes
 (FIPS Mode 1 by default) */
 unsigned status;

 config.algs = FIPS_USING_MODE_2; /* change to request Mode 2 */

 /* Initialize cryptographic library via DEP */

 status = fipsCoreInit(&config, &alloc, 0, &coreAccess);
 if (status != 0) {
 /* crypto library is not successfully initialized */
 ASSERT(!coreAccess);
 exit(1);
 }

 ASSERT(coreAccess);

 /* Use the library via coreAccess.
 Check the established mode as an example. */

 if (coreAccess->core.get_mode() != FIPS_MODE_2) {
 /* This is not the mode we requested. Bail out. */
 exit(1);
 }

 /* use library ... */

Figure 3 32/64-bit sub-module initialization - C fragment

Page 25

As before, this code is ilustrative only; NO_ERROR is defined as 0 in cryptoh.inc. 'init_error'
represents a location where the failure to initialize the library is handled. All access to the
cryptographic services of the 16-bit sub-module requires calling Crypto_Library, which returns a
non-zero status output if the library has not been initialized successfully.

Re-initialization

The 16-bit sub-module may be re-initialized by calling Crypto_Library specifying the service
IInit_Library.

The 32/64-bit sub-module cannot be re-initialized without re-loading the executable containing it; in
the kernel, this may require rebooting the GPC. An attempt to invoke fipsCoreInit() after
successful initialization in an executable results in an error status being returned; however, the sub-
module state is not affected by this.

Module Security Policy Rules

COs must observe the following practice:

• When performing key generation services, COs are required to use an entropy source with
sufficient entropy for generating the seed value(s) to be provided to the Approved DRBG
algorithm. See section 'NDRNG guidance' below for details.

• Keys that are entered into or output from the cryptographic boundary must be handled
appropriately.

• Long-running processes using a DRBG instance must observe the guidance concerning
explicit Generate function tests described opposite 'DRBG health tests' in the table of the
next section.

NDRNG guidance

Key generation requires a source of entropy to ensure that the cryptographic strength of generated
key meets the FIPS requirements.

The cryptographic module does not have its own source of entropy; it requires a source of entropy
outside of the module's logical boundary. For the purpose of this document, this source is called a
Non-Approved non-Deterministic Random Number Generator ('NDRNG'); the strength of
cryptographic keys generated by the module depends on the entropy output by the NDRNG used.
Hence, there is no assurance of the minimum strength of generated keys.

.MODEL TINY

.586

.CODE
INCLUDE cryptoh.inc
; ...
 mov dx, IInit_Library ; set up service number
 call Crypto_Library ; perform service via DEP
 cmp ax, NO_ERROR
 jne init_error ; library not initialized, bail out
;
; we can use the library now ...

Figure 4 16-bit sub-module initialization - MASM fragment

Page 26

During key generation, NDRNG output is passed as seed entropy to either a DRBG (AES and RSA key
generation) or a PRNG (legacy; AES only; unapproved mode). The output of the DRBG (or PRNG) is
used in the generation of the keys themselves.

When using DRBG-based key generation, the module specifies the amount of entropy it needs from
the NDRNG via the DRBG's entropy_source call-back; if the NDRNG is unable to satisfy the
request, it must return an error so that key generation fails rather than use insufficient entropy.
DRBG requests for nonce values via the same mechanism are counted as requests for entropy.

When using PRNG-based key generation, the entropy input string is passed as data input of the same
size as the key to be generated; consequently the data input must represent full entropy. The
PRNG-based mechanism does not permit the introduction of sufficient additional entropy for
generating subsequent AES-256 keys and therefore the PRNG must be re-seeded before generating
each AES-256 key. PRNG-based key-generation is disallowed after 2015.

The table below provides an indication of the minimum entropy required for generating keys using a
single instance of the DRBG or PRNG. The security strength values are based on Table 2 in NIST
SP800-57. The entropy required values are the minimum due to the possibility of discarding
entropy during the generation process; this particularly affects RSA key generation owing to the
probabilistic nature of the method used. Differences in the entropy required for first and
subsequent keys reflect the entropy overhead in initializing the DRBG-based key generation
mechanism.

Table 14 Minimum entropy requirements for key generation

Key type and
size

Security
strength (bits)

Deterministic RBG
used within module
(security strength)

Minimum entropy required (bits)

First key Subsequent keys

AES-128 128
DRBG (128) 448 128

PRNG (128) 128 128 (via DT input)

AES-192 192 DRBG (192) 672 192

AES-256 256

DRBG (256) 896 256

PRNG (256) 256
128 (via DT input);

do not use - see
above.

RSA, 2048 112
DRBG (128) 960 768

RSA, 3072 128

	Introduction
	Modes
	Cryptographic Module Specification
	Cryptographic and Physical Boundaries

	Module Ports and Interfaces
	Roles, Services and Authentication
	Identification and Authentication
	Roles and Services

	Physical Security
	Cryptographic Key Management
	Pre-loaded cryptographic keys
	Run-time cryptographic keys
	Memory Management
	Zeroizing of Keys, CSPs and Sensitive Data

	Self-Test
	Crypto-Officer and User Guidance
	Secure Setup and Initialization
	Initialization of FIPS Modes in the 32/64 bit sub-module
	Initialization of the 16-bit sub module.
	Re-initialization

	Module Security Policy Rules
	NDRNG guidance

