In the evaluated configuration this connection is secured using TLS.

Ciena 8700 Packetwave Platform with SAOS 8.5

Security Target

ST Version: 1.0 May 11, 2017

Ciena Corporation 7035 Ridge Road Hanover, MD 21076

Prepared By:

Booz | Allen | Hamilton

delivering results that endure

Cyber Assurance Testing Laboratory 304 Sentinel Drive Suite 1160 Annapolis Junction, MD 20701

Table of Contents

1	Sec	Security Target Introduction		
	1.1	ST I	Reference	
	1.1.	.1	ST Identification	
	1.1.	.2	Document Organization	
	1.1.	.3	Terminology7	
	1.1.	.4	Acronyms7	
	1.1.	.5	References	
	1.2	TO	E Reference	
	1.3	TOI	E Overview	
	1.4	TOF	E Type	
2	TO	E Des	cription	
	2.1	Eva	luated Components of the TOE10	
	2.2	Con	ponents and Applications in the Operational Environment10	
	2.3	Exc	luded from the TOE	
	2.3	.1	Not Installed	
	2.3.	.2	Installed but Requires a Separate License	
	2.3	.3	Installed but Not Part of the TSF	
	2.4	Phy	sical Boundary	
	2.5	Log	ical Boundary12	
	2.5.	.1	Security Audit	
	2.5	.2	Cryptographic Support	
	2.5	.3	Identification and Authentication	
	2.5	.4	Security Management	
	2.5	.5	Protection of the TSF	
	2.5	.6	TOE Access	
	2.5.	.7	Trusted Path/Channels	
3	Cor	nform	ance Claims15	
	3.1	CC	Version15	
	3.2	CC	Part 2 Conformance Claims15	
	3.3	CC	Part 3 Conformance Claims15	

Ciena 8700

	3.4	PP Claims	15
	3.5	Package Claims	16
	3.6	Package Name Conformant or Package Name Augmented	16
	3.7	Conformance Claim Rationale	16
4	Secu	curity Problem Definition	17
	4.1	Threats	17
	4.2	Organizational Security Policies	18
	4.3	Assumptions	18
	4.4	Security Objectives	19
	4.4.	.1 TOE Security Objectives	19
	4.4.	.2 Security Objectives for the Operational Environment	19
	4.5	Security Problem Definition Rationale	20
5	Exte	ended Components Definition	21
	5.1	Extended Security Functional Requirements	21
	5.2	Extended Security Assurance Requirements	21
6	Sec	curity Functional Requirements	22
	6.1	Conventions	22
	6.2	Security Functional Requirements Summary	22
	6.3	Security Functional Requirements	23
	6.3.	.1 Class FAU: Security Audit	23
	6.3.	.2 Class FCS: Cryptographic Support	26
	6.3.	.3 Class FIA: Identification and Authentication	30
	6.3.	.4 Class FMT: Security Management	32
	6.3.	.5 Class FPT: Protection of the TSF	33
	6.3.	.6 Class FTA: TOE Access	34
	6.3.	.7 Class FTP: Trusted Path/Channels	35
	6.4	Statement of Security Functional Requirements Consistency	36
7	Secu	curity Assurance Requirements	37
	7.1	Class ADV: Development	37
	7.1.1 Basic Functional Specification (ADV_FSP.1)		37
	7.2	Class AGD: Guidance Documentation	38

	7.2.1	Operational User Guidance (AGD_OPE.1)	
	7.2.2	Preparative Procedures (AGD_PRE.1)	
	7.3 Cla	ss ALC: Life Cycle Supports	
	7.3.1	Labeling of the TOE (ALC_CMC.1)	
	7.3.2	TOE CM Coverage (ALC_CMS.1)	40
	7.4 Cla	ss ATE: Tests	
	7.4.1	Independent Testing - Conformance (ATE_IND.1)	
	7.5 Cla	ss AVA: Vulnerability Assessment	41
	7.5.1	Vulnerability Survey (AVA_VAN.1)	41
8	TOE Sur	mmary Specification	
	8.1 Sec	urity Audit	
	8.1.1	FAU_GEN.1:	
	8.1.2	FAU_GEN.2:	
	8.1.3	FAU_STG.1:	49
	8.1.4	FAU_STG_EXT.1:	49
	8.2 Cry	ptographic Support	49
	8.2.1	FCS_CKM.1:	49
	8.2.2	FCS_CKM.2:	
	8.2.3	FCS_CKM.4:	
	8.2.4	FCS_COP.1(1):	51
	8.2.5	FCS_COP.1(2):	51
	8.2.6	FCS_COP.1(3):	51
	8.2.7	FCS_COP.1(4):	51
	8.2.8	FCS_RBG_EXT.1:	51
	8.2.9	FCS_SSHC_EXT.1/ FCS_SSHS_EXT.1:	
	8.2.10	FCS_TLSC_EXT.2:	
	8.3 Iden	ntification and Authentication	53
	8.3.1	FIA_PMG_EXT.1:	53
	8.3.2	FIA_UAU.7:	53
	8.3.3	FIA_UAU_EXT.2:	53
	8.3.4	FIA_UIA_EXT.1:	53

8.3.5	FIA_X509_EXT.1/ FIA_X509_EXT.2/ FIA_X509_EXT.3:	53
8.4 Sec	curity Management	54
8.4.1	FMT_MOF.1(1)/Audit:	54
8.4.2	FMT_MOF.1(1)/TrustedUpdate:	54
8.4.3	FMT_MTD.1:	54
8.4.4	FMT_MTD.1/AdminAct:	54
8.4.5	FMT_SMF.1:	54
8.4.6	FMT_SMR.2:	55
8.5 Pro	ptection of the TSF	55
8.5.1	FPT_APW_EXT.1:	55
8.5.2	FPT_SKP_EXT.1:	55
8.5.3	FPT_STM.1:	55
8.5.4	FPT_TST_EXT.1:	55
8.5.5	FPT_TUD_EXT.1:	56
8.6 TO	DE Access	56
8.6.1	FTA_SSL_EXT.1:	56
8.6.2	FTA_SSL.3:	56
8.6.3	FTA_SSL.4:	57
8.6.4	FTA_TAB.1:	57
8.7 Tru	usted Path/Channels	57
8.7.1	FTP_ITC.1:	57
8.7.2	FTP_TRP.1:	57

Table of Figures

Figure 1: TOE Boundary	9
Figure 2: 10-Slot Chassis	.12
Figure 3: 4-Slot Chassis	.12

Table of Tables

Fable 1: Customer Specific Terminology	7
Fable 2: CC Specific Terminology	7
Fable 3: Acronym Definition	8
Fable 4: Evaluated Components of the TOE	10
Table 5: Evaluated Components of the Operational Environment	10
Table 6: TOE Threats	18
Fable 7: Organizational Security Policies	18
Fable 8: TOE Assumptions	19
Fable 9: Operational Environment Objectives	20
Table 10: Security Functional Requirements for the TOE	23
Fable 11: Auditable Events	25
Fable 12: Sample Audit Records	48
Fable 14: Cryptographic Key Generation	50
Table 15: Cryptographic Materials, Storage, and Destruction Methods	51

1 Security Target Introduction

This chapter presents the Security Target (ST) identification information and an overview. An ST contains the Information Technology (IT) security requirements of an identified Target of Evaluation (TOE) and specifies the functional and assurance security measures offered by the TOE.

1.1 ST Reference

This section provides information needed to identify and control this ST and its Target of Evaluation.

1.1.1 ST Identification

ST Title:	Ciena 8700 Packetwave Platform with SAOS 8.5 Security Target
ST Version:	1.0
ST Publication Date:	May 11, 2017
ST Author:	Booz Allen Hamilton

1.1.2 **Document Organization**

Chapter 1 of this document provides identifying information for the ST and TOE as well as a brief description of the TOE and its associated TOE type.

Chapter 2 describes the TOE in terms of its physical boundary, logical boundary, exclusions, and dependent Operational Environment components.

Chapter 3 describes the conformance claims made by this ST.

Chapter 4 describes the threats, assumptions, objectives, and organizational security policies that apply to the TOE.

Chapter 5 defines extended Security Functional Requirements (SFRs) and Security Assurance Requirements (SARs).

Chapter 6 describes the SFRs that are to be implemented by the TSF.

Chapter 7 describes the SARs that will be used to evaluate the TOE.

Chapter 8 provides the TOE Summary Specification, which describes how the SFRs that are defined for the TOE are implemented by the TSF.

1.1.3 **Terminology**

This section defines the terminology used throughout this ST. The terminology used throughout this ST is defined in Table 1 and 2. These tables are to be used by the reader as a quick reference guide for terminology definitions.

Term	Definition			
Administrator A user who is assigned any of the three administrative roles defined for the				
TOE: Limited, Admin, and Super. While these are all considered to be				
	administrators, the assigned role determines the specific level of privilege a			
given administrator has to interact with TOE functions and data.				
Table 1: Customer Specific Terminology				

Term	Definition	
Security	The claimed Protection Profile defines a single Security Administrator role that	
Administrator	is authorized to manage the TOE and its data. Since this particular TOE defines	
	three separate administrator roles, an administrator is considered to be the	
	Security Administrator for only the management functions that are associated	
	with their assigned role.	
Trusted Channel	An encrypted connection between the TOE and a system in the Operational	
	Environment.	
Trusted Path	An encrypted connection between the TOE and the application a Security	
	Administrator uses to manage it (web browser, terminal client, etc.).	
User	In a CC context, any individual who has the ability to access the TOE functions	
	or data.	

Table 2: CC Specific Terminology

1.1.4 Acronyms

The acronyms used throughout this ST are defined in Table 3. This table is to be used by the reader as a quick reference guide for acronym definitions.

Acronym	Definition	
CC Common Criteria		
CLI	Command-Line Interface	
сРР	collaborative Protection Profile	
FTP	File Transfer Protocol	
IP	Internet Protocol	
NDcPP	NDcPP Network Device collaborative Protection Profile	
NIAP National Information Assurance Partnership		
OS Operating System		
PP Protection Profile		
RBG Random Bit Generator		
SFR Security Functional Requirement		
SHA Secure Hash Algorithm		
SHS Secure Hash Standard		
SSH	Secure Shell	

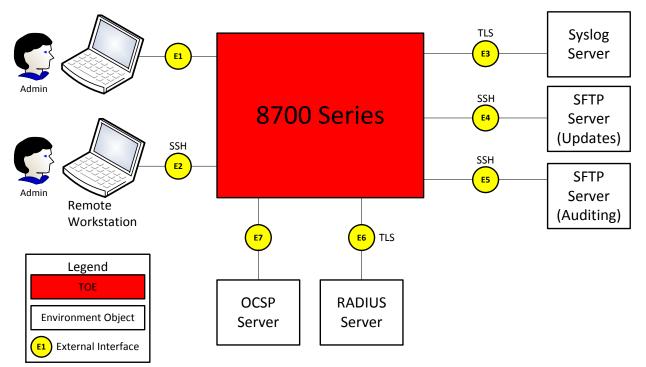
ST	Security Target	
TLS	Transport Layer Security	
TOE	Target of Evaluation	
TSF	TOE Security Function	
UI	User Interface	

Table 3: Acronym Definition

1.1.5 References

- [1] Collaborative Protection Profile for Network Devices, version 1.0 (NDcPP)
- [2] Common Criteria for Information Technology Security Evaluation Part 1: Introduction and general model, dated September 2012, version 3.1, Revision 4, CCMB-2012-009-001
- [3] Common Criteria for Information Technology Security Evaluation Part 2: Security functional components, dated September 2012, version 3.1, Revision 4, CCMB-2012-009-002
- [4] Common Criteria for Information Technology Security Evaluation Part 3: Security assurance components, dated September 2012, version 3.1, Revision 4, CCMB-2012-009-003
- [5] Common Methodology for Information Technology Security Evaluation Evaluation Methodology, dated September 2012, version 3.1, Revision 4, CCMB-2012-009-004
- [6] NIST Special Publication 800-56B Recommendation for Pair-Wise Key Establishment Schemes Using Integer Factorization Cryptography, August 2009
- [7] NIST Special Publication 800-38A Recommendation for Block Cipher Modes of Operation, December 2001
- [8] FIPS PUB 140-2 Federal Information Processing Standards Publication Security Requirements for Cryptographic Modules May 25, 2001
- [9] FIPS PUB 180-3 Federal Information Processing Standards Publication Secure Hash Standard (SHS) October 2008
- [10] FIPS PUB 180-4 Federal Information Processing Standards Publication Secure Hash Standard (SHS) March 2012
- [11] FIPS PUB 197 Advanced Encryption Standard November 26 2012
- [12] FIPS PUB 198-1 Federal Information Processing Standards Publication The Keyed-Hash Message Authentication Code (HMAC) July 2008

1.2 TOE Reference


The TOE is the Ciena 8700 Packetwave Platform. There are two models of the TOE: one model with a 4slot chassis and another model with a 10-slot chassis. Both of these models run on the Ciena Service Aware Operating System (SAOS) 8.5 and have uniform security functionality between them.

1.3 TOE Overview

Ciena 8700 Packetwave Platform (also known as the Ciena 8700 or the TOE) is a network device that includes hardware and software and has two separate models. The TOE has one model with a 4-slot chassis and the other with a 10-slot chassis. The basic difference between the two models in Section 2.4 is the number of module slots and number of power supplies. Both models use the same Service Aware Operating System (SAOS) v8.5 management shell with identical security functionality. The software

binary images and underlying processor architecture are also identical. The TOE is managed through a command-line interface (CLI) that is available both locally and remotely. Remote administration can be performed either out-of-band (via a dedicated management port) or in-band (via a network traffic port configured to direct traffic inbound to the TOE's management plane).

The following figure depicts the TOE boundary:

Figure 1: TOE Boundary

There are seven security-relevant external interfaces supported by the Ciena 8700. The intended usage and security of each of these interfaces is described in the TOE Summary Specification below. The audit records produced by the TOE are transmitted to a remote syslog server over TLS (for syslog audit records) and to a remote audit server over SFTP (for security, event, and command log records). Software/firmware updates for the TOE can be transferred from a remote server to the TOE via SFTP. The OCSP server interface is used to verify the revocation status of certificates. The RADIUS server interface can be used for administrator authentication (although administrator credentials can also be defined by the TOE itself). All RADIUS communications are secured using TLS. It should be noted that the primary purpose of this product is to perform packet networking. However, this is outside the scope of the TOE because it is not a security function that is specified in the claimed cPP and therefore excluded from Figure 1.

1.4 TOE Type

The TOE type for this product is Network Device. The product is a hardware appliance whose primary functionality is related to the handling of network traffic. The NDcPP defines a network device as "a device composed of hardware and software that is connected to the network and has an infrastructure role in the overall enterprise." Additionally, the NDcPP says that example devices that fit this definition include routers, firewalls, intrusion detection systems, audit servers, and switches that have Layer 2

functionality. The TOE is a packet networking switch that performs second tier aggregation of network traffic that interfaces with an IP/MPLS domain.

The TOE type is justified because the TOE provides an infrastructure role in internetworking of different network environments across an enterprise.

2 TOE Description

This section provides a description of the TOE in its evaluated configuration. This includes the physical and logical boundaries of the TOE.

2.1 Evaluated Components of the TOE

The following table describes the TOE components in the evaluated configuration:

Component	Hardware Components	Software Version		
Ciena 8700 Packetwave Platform	4-slot or 10-slot chassis	SAOS Version 8.5		
Table 4: Evaluated Components of the TOE				

2.2 Components and Applications in the Operational Environment

The following table lists components and applications in the environment that the TOE relies upon in order to function properly:

Component	Definition			
Management	Any general-purpose computer that is used by an administrator to manage the			
Workstation	TOE. The TOE can be managed remotely, in which case the management			
	workstation requires an SSH client, or locally, in which case the management			
	workstation must be physically connected to the TOE using the serial port and			
	must use a terminal emulator that is compatible with serial communications.			
OCSP Server	The OCSP server is used by the TOE to validate certificate revocation status.			
SFTP Server	The SFTP server is used for storage of TOE software/firmware updates that			
	can be retrieved remotely by the TSF. The Administrator can also transfer the			
	security, event, and command logs to another or the same SFTP server over			
	this interface. Communications over this interface are secured using SFTP via			
	SSH where the TOE is acting as an SSH client.			
Syslog Server	A remote server that is used to store syslog audit records that the TOE			
	transmits to it. The TOE communicates with the syslog server using TLS.			
RADIUS Server	The RADIUS server enables user authentication and is secured using TLS.			
	Note that while RADIUS authentication is supported by the TOE, the use of it			
	is not mandatory.			
	Table 5: Evaluated Components of the Operational Environment			

Table 5: Evaluated Components of the Operational Environment

2.3 Excluded from the TOE

The following optional products, components, and/or applications can be integrated with the TOE but are not included in the evaluated configuration. They provide no added security related functionality for the

evaluated product. They are separated into three categories: not installed, installed but requires a separate license, and installed but not part of the TSF.

2.3.1 Not Installed

There are no optional components that are omitted from the installation process.

2.3.2 Installed but Requires a Separate License

There are no excluded components that are installed and require a separate license.

2.3.3 Installed but Not Part of the TSF

- Non-FIPS mode of operation The product includes a FIPS compliant mode of operation which allows the TOE to use only approved ciphersuites for SSH communications and to perform cryptographic self-tests on system startup. This mode of operation must be enabled in order for the TOE to be operating in its evaluated configuration.
- **Remote Telnet interface** The product includes both Telnet and SSH interfaces for administration. Telnet is acceptable to use locally via serial connection, but in the evaluated configuration this remote service will be disabled.
- **DHCP Server interface** The product includes this interface that supports communications between the TOE and a DHCP Server in the Operational Environment; however, it will be disabled in the evaluated configuration.
- **SNMP interface** The product includes this interface which may be used by external entities to communicate with it using the SNMP protocol in order to configure or read the device state. It also provides the ability to generate SNMP traps that are sent to external SNMP tools. In the evaluated configuration, this will be disabled.
- **TACACS+ Interface** The product supports this interface which is used to provide authentication services, but will be disabled in this evaluated configuration.
- Network Configuration Protocol (NETCONF) the installation, deletion, and manipulation of network configuration over SSH will not be included.
- **Diagnostic (Diag) role** The product supports a Diagnostic role; however, this role is only used for non-security-relevant service functionality and will be excluded from the evaluated configuration when the TOE is in an operational state.

Additionally, the TOE includes a number of functions that are outside the scope of the claimed Protection Profile. These functions are not part of the TSF because there are no SFRs that apply to them.

2.4 Physical Boundary

The Ciena 8700 has two separate models that are pictured below. They have no differences in processor type, software/firmware, or security-related functions. However, they do differ in hardware because of their chassis size, number of ports, and network capacity for switched traffic. The Ciena 8700 has two processors: CTX - P4080NSE7PNC and LM-200 series - NXP/Freescale P2020. Hardware cryptologic acceleration is not being used for either processor.

Figure 2: 10-Slot Chassis

Figure 3: 4-Slot Chassis

2.5 Logical Boundary

The TOE is comprised of several security features. Each of the security features identified above consists of several security functionalities, as identified below.

- 1. Security Audit
- 2. Cryptographic Support
- 3. Identification and Authentication
- 4. Security Management
- 5. Protection of the TSF
- 6. TOE Access
- 7. Trusted Path/Channels

2.5.1 Security Audit

The TOE contains mechanisms to generate audit data to record predefined events on the TOE. The TOE transmits syslog audit data securely to a remote syslog server using TLS. The TOE also maintains security, event, and command logs internally. The contents of these logs can be configured to be transferred automatically to a remote SFTP server. Each audit record contains the subject information, time stamp, message briefly describing what actions were performed, outcome of the event, and severity. All audit record information is associated with the user of the TOE that caused the event where applicable. Locally-stored audit data can be deleted by a user with the Super role but it is read-only for all other roles. Local audit data is overwritten when the local storage space is full.

2.5.2 Cryptographic Support

The TOE provides cryptography in support of SSH and TLS trusted communications. Asymmetric keys that are used by the TSF are generated in accordance with FIPS PUB 186-4 and are established in accordance with NIST SP 800-56A and NIST SP 800-56B. The TOE uses NIST-validated cryptographic algorithms (certificates DSA #1198, RSA #2445, ECDSA #1092, KAS ECC #120, AES #4470, SHS #3682, HMAC #2967, DRBG #1454) to provide cryptographic services. Ciena's implementation of these has been validated to ensure that the algorithms are appropriately strong and correctly implemented for use in trusted communications. The TOE collects entropy from software-based sources contained within the device to ensure sufficient randomness for secure key generation. Cryptographic keys are destroyed when no longer needed.

2.5.3 Identification and Authentication

Users authenticate to the TOE either via the local console or remotely using SSH for management of the TSF. All users must be identified and authenticated to the TOE before being allowed to perform any actions on the TOE other than viewing the pre-authentication warning banner. Users can be authenticated using RADIUS by connecting to a RADIUS server in the Operational Environment over TLS. Depending on the configuration of the TSF and the method used to access the TOE, the user can also authenticate using a locally-defined username/password combination (as opposed to credentials being defined in RADIUS) or through SSH public key-based authentication. The TOE provides complexity rules that ensure that user-defined passwords will meet a minimum security strength. As part of connecting to the TOE locally using the management workstation, password data will be obfuscated as it is being input. The TSF connects to an OCSP server to verify certificate revocation status and includes a mechanism internally to determine the validity of certificates. The TOE also provides support for X.509v3 certificates for authentication.

2.5.4 Security Management

The TOE maintains distinct roles for user accounts: Limited, Admin, and Super. These roles define the management functions for each user on the TOE. A user who is assigned one of these roles is considered to be an administrator of the TOE, but the functions they are authorized to perform will differ based on the assigned role. The three roles are hierarchical, so each role has all of the privileges of the role(s) below it. A Limited user has read-only privileges for certain TOE functions and data whereas a user with the Admin role has read/write permission over most TOE functionality. The Super role is the highest role and can perform read/write operations on all TOE functions and data, including those functions that the Admin role is not authorized to perform. All administration of the TOE can be performed locally using a management workstation with a terminal client, or remotely using an SSH remote terminal application.

2.5.5 **Protection of the TSF**

The TOE is able to ensure the security and integrity of all data that is stored locally and accessed remotely. The TOE provides no interface for the disclosure of secret cryptographic data, and administrative passwords themselves are hashed using SHA-512. The TOE maintains system time locally based on an administratively-defined time. TOE software updates are acquired using SFTP and initiated using the CLI. The TOE software version is administratively verifiable and software updates are signed to

provide assurance of their integrity. The TSF validates its own correctness through the use of self-tests for both cryptographic functionality and integrity of the system software.

2.5.6 TOE Access

The TSF can terminate inactive sessions after an administrator-configurable time period. The TOE also allows users to terminate their own interactive session. Once a session has been terminated the TOE requires the user to re-authenticate to establish a new session. The TOE displays a configurable warning banner prior to its administrative use.

2.5.7 Trusted Path/Channels

The TOE establishes a trusted path to the TOE using SSH for remote administration. The TOE establishes trusted channels using TLS for sending syslog audit data to a remote syslog server and SSH for sending stored security, command, and event log data to a remote SFTP server. In addition, the TOE uses the SFTP interface to download updates and store log files. The TOE may also connect to the RADIUS server for user authentication using TLS.

3 Conformance Claims

3.1 CC Version

This ST is compliant with Common Criteria for Information Technology Security Evaluation, Version 3.1 Revision 4 September 2012.

3.2 CC Part 2 Conformance Claims

This ST and Target of Evaluation (TOE) is Part 2 extended to include all applicable NIAP and International interpretations through May 11, 2017.

3.3 CC Part 3 Conformance Claims

This ST and Target of Evaluation (TOE) are conformant to Part 3 to include all applicable NIAP and International interpretations through May 11, 2017.

3.4 PP Claims

This ST claims exact conformance to the following Protection Profiles:

• collaborative Protection Profile for Network Devices, version 1.0 [NDcPP]

The following is the list of NIAP Technical Decisions that are applicable to the ST/TOE:

- TD0090
- TD0095
- TD0112
- TD0117
- TD0130
- TD0143
- TD0150
- TD0152
- TD0154
- TD0155
- TD0164
- TD0168
- TD0182
- TD0183
- TD0185
- TD0186
- TD0187
- TD0199
- TD0200

Note that Technical Decisions were not considered to be applicable if any of the following conditions were true:

- The Technical Decision does not apply to the NDcPP
- The Technical Decision applies to an SFR that was not claimed by the TOE
- The Technical Decision applies to an SFR selection or assignment that was not chosen for the TOE
- The Technical Decision only applies to one or more Application Notes in the NDcPP and does not affect the SFRs or how the evaluation of the TOE is conducted
- The Technical Decision was superseded by a more recent Technical Decision
- The Technical Decision is issued as guidance for future versions of the NDcPP

3.5 Package Claims

The TOE claims exact conformance to the NDcPP, which is conformant with CC Part 3.

The TOE claims following Selection-Based SFRs that are defined in the appendices of the claimed PP:

- FCS_SSHC_EXT.1
- FCS_SSHS_EXT.1
- FCS_TLSC_EXT.2
- FIA_X509_EXT.1
- FIA_X509_EXT.2
- FIA_X509_EXT.3

The TOE claims the following Optional SFRs that are defined in the appendices of the claimed cPP:

- FAU_STG.1
- FMT_MOF.1(1)/Audit
- FMT_MTD.1(1)/AdminAct

This does not violate the notion of exact conformance because the cPP specifically indicates these as allowable selections and options and provides both the ST author and evaluation laboratory with instructions on how these claims are to be documented and evaluated.

3.6 Package Name Conformant or Package Name Augmented

This ST and TOE are in exact conformance with the NDcPP.

3.7 Conformance Claim Rationale

The NDcPP states the following: "This is a Collaborative Protection Profile (cPP) whose Target of Evaluation (TOE) is a network device... A network device in the context of this cPP is a device composed of both hardware and software that is connected to the network and has an infrastructure within the network... Examples of network devices that are covered by requirements in this cPP include routers, firewalls, VPN gateways, IDSs, and switches."

The TOE is a network device composed of hardware and software that is designed to perform packet switching for large quantities of packet traffic. As such, it can be understood as a network switch. Therefore, the conformance claim is appropriate.

4 Security Problem Definition

4.1 Threats

This section identifies the threats against the TOE. These threats have been taken from the NDcPP.

Threat	Threat Definition
T.UNAUTHORIZED_ADMINISTRATOR_ACCESS	Threat agents may attempt to gain administrator
	access to the network device by nefarious means such
	as masquerading as an administrator to the device,
	masquerading as the device to an administrator,
	replaying an administrative session (in its entirety, or
	selected portions), or performing man-in-the-middle
	attacks, which would provide access to the
	administrative session, or sessions between network
	devices. Successfully gaining administrator access
	allows malicious actions that compromise the security
	functionality of the device and the network on which
	it resides.
T.WEAK_CRYPTOGRAPHY	Threat agents may exploit weak cryptographic
	algorithms or perform a cryptographic exhaust
	against the key space. Poorly chosen encryption
	algorithms, modes, and key sizes will allow attackers
	to compromise the algorithms, or brute force exhaust
	the key space and give them unauthorized access
	allowing them to read, manipulate and/or control the
	traffic with minimal effort.
T.UNTRUSTED_COMMUNICATION_CHANNEL	Threat agents may attempt to target network devices
	that do not use standardized secure tunneling
	protocols to protect the critical network traffic.
	Attackers may take advantage of poorly designed
	protocols or poor key management to successfully
	perform man-in-the middle attacks, replay attacks,
	etc. Successful attacks will result in loss of
	confidentiality and integrity of the critical network
	traffic, and potentially could lead to a compromise of
	the network device itself.
T.WEAK_AUTHENTICATION_ENDPOINTS	Threat agents may take advantage of secure protocols
	that use weak methods to authenticate the endpoints –
	e.g., shared password that is guessable or transported
	as plaintext. The consequences are the same as a
	poorly designed protocol, the attacker could
	masquerade as the administrator or another device, and the attacker could insert themselves into the
	network stream and perform a man-in-the-middle
	attack. The result is the critical network traffic is
	exposed and there could be a loss of confidentiality
	and integrity, and potentially the network device itself
TUDDATE COMBDOMISE	could be compromised.
T.UPDATE_COMPROMISE	Threat agents may attempt to provide a compromised
	update of the software or firmware which undermines

	the security functionality of the device. Non-validated
	updates or updates validated using non-secure or
	weak cryptography leave the update firmware
	vulnerable to surreptitious alteration.
T.UNDETECTED_ACTIVITY	Threat agents may attempt to access, change, and/or
	modify the security functionality of the network
	device without administrator awareness. This could
	result in the attacker finding an avenue (e.g.,
	misconfiguration, flaw in the product) to compromise
	the device and the administrator would have no
	knowledge that the device has been compromised.
T.SECURITY_FUNCTIONALITY_COMPROMISE	Threat agents may compromise credentials and
	device data enabling continued access to the network
	device and its critical data. The compromise of
	credentials includes replacing existing credentials
	with an attacker's credentials, modifying existing
	credentials, or obtaining the administrator or device
	credentials for use by the attacker.
T.PASSWORD_CRACKING	Threat agents may be able to take advantage of weak
	administrative passwords to gain privileged access to
	the device. Having privileged access to the device
	provides the attacker unfettered access to the network
	traffic, and may allow them to take advantage of any
	trust relationships with other network devices.
T.SECURITY_FUNCTIONALITY_FAILURE	A component of the network device may fail during
	start-up or during operations causing a compromise or
	failure in the security functionality of the network
	device, leaving the device susceptible to attackers.
Table 6, TO	

Table 6: TOE Threats

4.2 Organizational Security Policies

This section identifies the organizational security policies which are expected to be implemented by an organization that deploys the TOE. These policies have been taken from the NDcPP.

Policy	Policy Definition	
P.ACCESS_BANNER	The TOE shall display an initial banner describing restrictions of use, legal agreements,	
	or any other appropriate information to which users consent by accessing the TOE.	
Table 7: Organizational Security Policies		

4.3 Assumptions

The specific conditions listed in this section are assumed to exist in the TOE's Operational Environment. These assumptions have been taken from the NDcPP.

Assumption	Assumption Definition	
A.PHYSICAL_PROTECTION	The network device is assumed to be physically protected in its	
	operational environment and not subject to physical attacks that	
	compromise the security and/or interfere with the device's physical	
	interconnections and correct operation. This protection is assumed to be	
	sufficient to protect the device and the data it contains. As a result, the	
	cPP will not include any requirements on physical tamper protection or	
	other physical attack mitigations. The cPP will not expect the product to	
	defend against physical access to the device that allows unauthorized	

	entities to extract data, bypass other controls, or otherwise manipulate the		
	device.		
A.LIMITED_FUNCTIONALITY	The device is assumed to provide networking functionality as its core		
	function and not provide functionality/services that could be deemed as		
	general purpose computing. For example, the device should not provide		
	computing platform for general purpose applications (unrelated to		
	networking functionality).		
A.NO_THRU_TRAFFIC_	A standard/generic network device does not provide any assurance		
PROTECTION	regarding the protection of traffic that traverses it. The intent is for the		
	network device to protect data that originates on or is destined to the		
	device itself, to include administrative data and audit data. Traffic that is		
	traversing the network device, destined for another network entity, is not		
	covered by the NDcPP. It is assumed that this protection will be covered		
	by cPPs for particular types of network devices (e.g., firewall).		
A.TRUSTED_ADMINISTRATOR	The Security Administrator(s) for the network device are assumed to be		
	trusted and to act in the best interest of security for the organization. This		
	includes being appropriately trained, following policy, and adhering to		
	guidance documentation. Administrators are trusted to ensure		
	passwords/credentials have sufficient strength and entropy and to lack		
	malicious intent when administering the device. The network device is		
	not expected to be capable of defending against a malicious administrator		
	that actively works to bypass or compromise the security of the device.		
A.REGULAR_UPDATES	The network device firmware and software is assumed to be updated by		
	an administrator on a regular basis in response to the release of product		
	updates due to known vulnerabilities.		
A.ADMIN_CREDENTIALS_	The administrator's credentials (private key) used to access the network		
SECURE	device are protected by the platform on which they reside.		
	Table 8: TOF Assumptions		

Table 8: TOE Assumptions

4.4 Security Objectives

This section identifies the security objectives of the TOE and its supporting environment. The security objectives identify the responsibilities of the TOE and its environment in meeting the security needs.

4.4.1 **TOE Security Objectives**

The NDcPP does not define any security objectives for the TOE.

4.4.2 Security Objectives for the Operational Environment

The TOE's operational environment must satisfy the following objectives:

Objective	Objective Definition	
OE.ADMIN_CREDENTIALS_SECURE	The administrator's credentials (private key) used to access the	
	TOE must be protected on any other platform on which they	
	reside.	
OE.NO_GENERAL_PURPOSE	There are no general-purpose computing capabilities (e.g.,	
	compilers or user applications) available on the TOE, other than	
	those services necessary for the operation, administration and	
	support of the TOE.	
E.NO_THRU_TRAFFIC_PROTECTION The TOE does not provide any protection of traffic that		
	it. It is assumed that protection of this traffic will be covered by	
	other security and assurance measures in the operational	
	environment.	

OE.PHYSICAL	Physical security, commensurate with the value of the TOE and	
	the data it contains, is provided by the environment.	
OE.TRUSTED_ADMIN	TOE Administrators are trusted to follow and apply all guidance	
	documentation in a trusted manner.	
OE.UPDATES	The TOE firmware and software is updated by an administrator	
	on a regular basis in response to the release of product updates	
	due to known vulnerabilities.	
	on a regular basis in response to the release of product updates	

Table 9: Operational Environment Objectives

4.5 Security Problem Definition Rationale

The assumptions, threats, OSPs, and objectives that are defined in this ST represent the assumptions, threats, OSPs, and objectives that are specified in the Protection Profile to which the TOE claims conformance.

5 Extended Components Definition

5.1 Extended Security Functional Requirements

The extended Security Functional Requirements that are claimed in this ST are taken directly from the PP to which the ST and TOE claim conformance. These extended components are formally defined in the PP in which their usage is required.

5.2 Extended Security Assurance Requirements

There are no extended Security Assurance Requirements in this ST.

6 Security Functional Requirements

6.1 Conventions

The CC permits four functional component operations—assignment, refinement, selection, and iteration—to be performed on functional requirements. This ST will highlight the operations in the following manner:

- Assignment: allows the specification of an identified parameter. Indicated with *italicized* text.
- **Refinement:** allows the addition of details. Indicated with **bold** text.
- Selection: allows the specification of one or more elements from a list. Indicated with <u>underlined</u> text.
- **Iteration:** allows a component to be used more than once with varying operations. Indicated with a sequential number in parentheses following the element number of the iterated SFR and/or separated by a "/" with a notation that references the function for which the iteration is used, e.g. "/TrustedUpdate" for an SFR that relates to update functionality

When multiple operations are combined, such as an assignment that is provided as an option within a selection or refinement, a combination of the text formatting is used.

If SFR text is reproduced verbatim from text that was formatted in a claimed PP (such as if the PP's instantiation of the SFR has a refinement or a completed assignment), the formatting is not preserved. This is so that the reader can identify the operations that are performed by the ST author as opposed to the PP author.

6.2 Security Functional Requirements Summary

Class Name	Component	Component Name
	Identification	
Security Audit (FAU)	FAU_GEN.1	Audit Data Generation
	FAU_GEN.2	User Identity Association
	FAU_STG.1	Protected Audit Trail Storage
	FAU_STG_EXT.1	Protected Audit Event Storage
Cryptographic Support	FCS_CKM.1	Cryptographic Key Generation
(FCS)	FCS_CKM.2	Cryptographic Key Establishment
	FCS_CKM.4	Cryptographic Key Destruction
	FCS_COP.1(1)	Cryptographic Operation (AES Data
		Encryption/Decryption)
	FCS_COP.1(2)	Cryptographic Operation (Signature Generation and
		Verification)
	FCS_COP.1(3)	Cryptographic Operation (Hash Algorithm)
	FCS_COP.1(4)	Cryptographic Operation (Keyed Hash Algorithm)
	FCS_RBG_EXT.1	Random Bit Generation
	FCS_SSHS_EXT.1	SSH Server Protocol
	FCS_SSHC_EXT.1	SSH Client Protocol
	FCS_TLSC_EXT.2	TLS Client Protocol with Authentication

The following table lists the SFRs claimed by the TOE:

Class Name	Component	Component Name
	Identification	
Identification and	FIA_PMG_EXT.1	Password Management
Authentication (FIA)	FIA_UAU.7	Protected Authentication Feedback
	FIA_UAU_EXT.2	Password-based Authentication Mechanism
	FIA_UIA_EXT.1	User Identification and Authentication
	FIA_X509_EXT.1	X509 Certificate Validation
	FIA_X509_EXT.2	X509 Certificate Authentication
	FIA_X509_EXT.3	X509 Certificate Requests
Security Management	FMT_MOF.1(1)/Audit	Management of Security Functions
(FMT)	FMT_MOF.1(1)/Trusted	Management of Security Functions Behavior
	Update	
	FMT_MTD.1	Management of TSF Data
	FMT_MTD.1/AdminAct	Management of TSF Data
	FMT_SMF.1	Specification of Management Functions
	FMT_SMR.2	Restrictions on Security Roles
Protection of the TSF (FPT)	FPT_APW_EXT.1	Protection of Administrator Passwords
	FPT_SKP_EXT.1	Protection of TSF Data (for reading of all symmetric
		keys)
	FPT_STM.1	Reliable Time Stamps
	FPT_TST_EXT.1	TSF Testing
	FPT_TUD_EXT.1	Trusted Update
TOE Access (FTA)	FTA_SSL.3	TSF-Initiated Termination
	FTA_SSL.4	User-Initiated Termination
	FTA_SSL_EXT.1	TSF-Initiated Session Locking
	FTA_TAB.1	Default TOE Access Banners
Trusted Path/Channels	FTP_ITC.1	Inter-TSF Trusted Channel
(FTP)	FTP_TRP.1	Trusted Path

 Table 10: Security Functional Requirements for the TOE

6.3 Security Functional Requirements

6.3.1 Class FAU: Security Audit

6.3.1.1 FAU_GEN.1 Audit Data Generation

FAU_GEN.1.1

The TSF shall be able to generate an audit record of the following auditable events:

- a) Start-up and shut-down of the audit functions;
- b) All auditable events for the not specified level of audit; and
- c) All administrative actions comprising:
 - Administrative login and logout (name of user account shall be logged if individual user accounts are required for administrators).
 - Security related configuration changes (in addition to the information that a change occurred it shall be logged what has been changed).

- Generating/import of, changing, or deleting of cryptographic keys (in addition to the action itself a unique key name or key reference shall be logged).
- Resetting passwords (name of related user account shall be logged).
- Starting and stopping services (if applicable)
- [<u>no other actions</u>];
- d) Specifically defined auditable events listed in Table 11;

FAU_GEN.1.2

The TSF shall record within each audit record at least the following information:

- a) Date and time of the event, type of event, subject identity, and the outcome (success or failure) of the event; and
- b) For each audit event type, based on the auditable event definitions of the functional components included in the PP/ST, information specified in column three of Table 11

Requirement	Auditable Event(s)	Additional Audit Record Contents
FAU_GEN.1	None.	None.
FAU_GEN.2	None.	None.
FAU_STG.1	None.	None.
FAU_STG_EXT.1	None.	None.
FCS_CKM.1	None.	None.
FCS_CKM.2	None.	None.
FCS_CKM.4	None.	None.
FCS_COP.1(1)	None.	None.
FCS_COP.1(2)	None.	None.
FCS_COP.1(3)	None.	None.
FCS_COP.1(4)	None.	None.
FCS_RBG_EXT.1	None.	None.
FCS_SSHS_EXT.1	Failure to establish an SSH session	Reason for failure.
		Non-TOE endpoint of connection (IP
		Address).
FCS_SSHC_EXT.1	Failure to establish an SSH session	Reason for failure.
		Non-TOE endpoint of connection (IP
		Address).
FCS_TLSC_EXT.2	Failure to establish a TLS session.	Reason for failure.
FIA_PMG_EXT.1	None.	None.
FIA_UAU_EXT.2	All use of identification and authentication mechanism.	Origin of the attempt (e.g., IP Address).
FIA_UAU.7	None.	None.
FIA_UIA_EXT.1	All use of identification mechanism.	Provided user identity, origin of the
		attempt (e.g., IP Address).
FIA_X509_EXT.1	Unsuccessful attempt to validate a	Reason for failure.
	certificate.	
FIA_X509_EXT.2	All use of identification and authentication	None.
	mechanism.	
FIA_X509_EXT.3	None.	None.
FMT_MOF.1(1)/	Modification of behavior of the	None.
Audit	transmission of audit data to an external IT entity.	
FMT_MOF.1(1)/Trus tedUpdate	Any attempt to initiate a manual update	None.

FMT_MTD.1	All management activities of TSF data.	None.
FMT_MTD.1/Admin	Modification, deletion, generation/import of	None
Act	cryptographic keys.	
FPT_APW_EXT.1	None.	None.
FPT_SKP_EXT.1	None.	None.
FPT_STM.1	Changes to the time.	The old and new values for the time.
		Origin of the attempt to change time for
		success and failure (e.g., IP address).
FPT_TST_EXT.1	None.	None.
FPT_TUD_EXT.1	Initiation of update; result of the update	No additional information.
	attempt (success or failure).	
FTA_SSL_EXT.1	Any attempts at unlocking of an interactive	None.
	session.	
FTA_SSL.3	The termination of a remote session by the	None.
	session locking mechanism.	
FTA_SSL.4	The termination of an interactive session.	None.
FTA_TAB.1	None.	None.
FTP_ITC.1	Initiation of the trusted channel.	Identification of the initiator and target of
	Termination of the trusted channel. Failure	failed trusted channels establishment
	of the trusted channel functions.	attempt.
FTP_TRP.1	Initiation of the trusted path. Termination of	Identification of the claimed user identity.
	the trusted path. Failure of the trusted path	
	functions.	

Table 11: Auditable Events

6.3.1.2 FAU_GEN.2 User Identity Association

FAU_GEN.2.1

For audit events resulting from actions of identified users, the TSF shall be able to associate each auditable event with the identity of the user that caused the event.

6.3.1.3 FAU_STG.1 Security Audit Trail Storage

FAU_STG.1.1

The TSF shall protect the stored audit records in the audit trail from unauthorized deletion.

FAU_STG.1.2

The TSF shall be able to prevent unauthorized modifications to the stored audit records in the audit trail.

6.3.1.4 FAU_STG_EXT.1 Protected Audit Event Storage

FAU_STG_EXT.1.1

The TSF shall be able to transmit the generated audit data to an external IT entity using a trusted channel according to FTP_ITC.1.

FAU_STG_EXT.1.2

The TSF shall be able to store generated audit data on the TOE itself.

FAU_STG_EXT.1.3

The TSF shall [overwrite previous audit records according to the following rule: [overwrite oldest log file of that audit record type]] when the local storage space for audit data is full.

6.3.2 Class FCS: Cryptographic Support

6.3.2.1 FCS_CKM.1 Cryptographic Key Generation

FCS_CKM.1.1

The TSF shall generate asymmetric cryptographic keys in accordance with a specified cryptographic key generation algorithm: [

- <u>RSA schemes using cryptographic key sizes of 2048-bit or greater that meet the following:</u> <u>FIPS PUB 186-4, "Digital Signature Standard (DSS)", Appendix B.3;</u>
- ECC schemes using "NIST curves" [P-256, P-384, P-521] that meet the following: FIPS PUB 186-4, "Digital Signature Standard (DSS)", Appendix B.4].

6.3.2.2 FCS_CKM.2 Cryptographic Key Establishment

FCS_CKM.2.1

The TSF shall perform cryptographic key establishment in accordance with a specified cryptographic key establishment method: [

- <u>RSA-based key establishment schemes that meets the following: NIST Special Publication</u> 800-56B, "Recommendation for Pair-Wise Key Establishment Schemes Using Integer Factorization Cryptography";
- <u>Elliptic curve-based key establishment schemes that meets the following: NIST Special</u> <u>Publication 800-56A, "Recommendation for Pair-Wise Key Establishment Schemes Using</u> <u>Discrete Logarithm Cryptography"</u>]

6.3.2.3 FCS_CKM.4 Cryptographic Key Destruction

FCS_CKM.4.1

The TSF shall destroy cryptographic keys in accordance with a specified cryptographic key destruction method [

- For plaintext keys in volatile storage, the destruction shall be executed by a [single overwrite consisting of [zeroes]];
- For plaintext keys in non-volatile storage, the destruction shall be executed by the invocation of an interface provided by a part of the TSF that [
 - instructs a part of the TSF to destroy the abstraction that represents the key]]

that meets the following: No Standard.

6.3.2.4 FCS_COP.1(1) Cryptographic Operation (AES Data Encryption/Decryption)

FCS_COP.1.1(1)

The TSF shall perform encryption/decryption in accordance with a specified cryptographic algorithm AES used in [CBC, GCM] mode and cryptographic key sizes [128 bits, 256 bits] that meet the following: AES as specified in ISO 18033-3, [CBC as specified in ISO 10116, GCM as specified in ISO 19772].

6.3.2.5 FCS_COP.1(2) Cryptographic Operation (for cryptographic signature)

FCS_COP.1.1(2)

The TSF shall perform cryptographic signature services (generation and verification) in accordance with a specified cryptographic algorithm [

- RSA Digital Signature Algorithm and cryptographic key sizes (modulus) [2048 bits]]
- Elliptic Curve Digital Signature Algorithm and cryptographic key sizes [256, 384, 521 bits]]

that meet the following: [

- For RSA schemes: FIPS PUB 186-4, "Digital Signature Standard (DSS)", Section 5.5, using PKCS #1 v2.1 Signature Schemes RSASSA-PSS and/or RSASSA-PKCS1v1_5; ISO/IEC 9796-2, Digital signature scheme 2 or Digital Signature scheme 3,
- For ECDSA schemes: FIPS PUB 186-4, "Digital Signature Standard (DSS)", Section 6 and Appendix D, Implementing "NIST curves" [P-256, P-384, P-521]; ISO/IEC 14888-3, Section 6.4].

6.3.2.6 FCS_COP.1(3) Cryptographic Operation (Hash Algorithm)

FCS_COP.1.1(3)

The TSF shall perform cryptographic hashing services in accordance with a specified cryptographic algorithm [SHA-1, SHA-256, SHA-384, SHA-512] that meet the following: ISO/IEC 10118-3:2004.

6.3.2.7 FCS_COP.1(4) Cryptographic Operation (Keyed Hash Algorithm)

FCS_COP.1.1(4)

The TSF shall perform keyed-hash message authentication in accordance with a specified cryptographic algorithm [HMAC-SHA-1, HMAC-SHA-256, HMAC-SHA-512] and cryptographic key sizes [greater than block size, less than block size, equal to block size], and message digest sizes [160, 256, 512] bits that meet the following: ISO/IEC 9797-2:2011, Section 7 "MAC Algorithm 2".

6.3.2.8 FCS_RBG_EXT.1 Cryptographic Operation (Random Bit Generation)

FCS_RBG_EXT.1.1

The TSF shall perform all deterministic random bit generation services in accordance with ISO/IEC 18031:2011 using [CTR_DRBG (AES)].

FCS_RBG_EXT.1.2

The deterministic RBG shall be seeded by at least one entropy source that accumulates entropy from [[2] software-based noise source] with a minimum of [256 bits] of entropy at least equal to the

greatest security strength, according to ISO/IEC 18031:2011 Table C.1 "Security Strength Table for Hash Functions", of the keys and hashes that it will generate.

6.3.2.9 FCS_SSHC_EXT.1 SSH Client Protocol

FCS_SSHC_EXT.1.1

The TSF shall implement the SSH protocol that complies with RFCs 4251, 4252, 4253, 4254 and [5647, 5656, 6668].

FCS_SSHC_EXT.1.2

The TSF shall ensure that the SSH protocol implementation supports the following authentication methods as described in RFC 4252: public key-based, [password-based].

FCS_SSHC_EXT.1.3

The TSF shall ensure that, as described in RFC 4253, packets greater than [32,768] bytes in an SSH transport connection are dropped.

FCS_SSHC_EXT.1.4

The TSF shall ensure that the SSH transport implementation uses the following encryption algorithms and rejects all other encryption algorithms: [aes128-cbc, aes256-cbc].

FCS_SSHC_EXT.1.5

The TSF shall ensure that the SSH transport implementation uses [<u>ssh-rsa, ecdsa-sha2-nistp256</u>] and [<u>ecdsa-sha2-nistp384, x509v3-ecdsa-sha2-nistp256, x509v3-ecdsa-sha2-nistp384</u>] as its public key algorithm(s) and rejects all other public key algorithms.

FCS_SSHC_EXT.1.6

The TSF shall ensure that the SSH transport implementation uses [<u>hmac-sha1, hmac-sha2-256, hmac-sha2-512</u>] and [<u>no other MAC algorithms</u>] as its MAC algorithm(s) and rejects all other MAC algorithm(s).

FCS_SSHC_EXT.1.7

The TSF shall ensure that [ecdh-sha2-nistp256] and [no other methods] are the only allowed key exchange methods used for the SSH protocol.

FCS_SSHC_EXT.1.8

The TSF shall ensure that within SSH connections the same session keys are used for a threshold of no longer than one hour, and no more than one gigabyte of transmitted data. After either of the thresholds are reached a rekey needs to be performed.

FCS_SSHC_EXT.1.9

The TSF shall ensure that the SSH client authenticates the identity of the SSH server using a local database associating each host name with its corresponding public key or [*a list of trusted certificate authorities*] as described in RFC 4251 section 4.1.

6.3.2.10 FCS_SSHS_EXT.1 SSH Server Protocol

FCS_SSHS_EXT.1.1

The TSF shall implement the SSH protocol that complies with RFCs, 4251, 4252, 4253, 4254, and [5647, 5656, 6668].

FCS_SSHS_EXT.1.2

The TSF shall ensure that the SSH protocol implementation supports the following authentication methods as described in RFC 4252: public key-based, password-based.

FCS_SSHS_EXT.1.3

The TSF shall ensure that, as described in RFC 4253, packets greater than [32,768] bytes in an SSH transport connection are dropped.

FCS_SSHS_EXT.1.4

The TSF shall ensure that the SSH transport implementation uses the following encryption algorithms and rejects all other encryption algorithms: [aes128-cbc, aes256-cbc].

FCS_SSHS_EXT.1.5

The TSF shall ensure that the SSH transport implementation uses [<u>ssh-rsa, ecdsa-sha2-nistp256</u>] and [<u>ecdsa-sha2-nistp384, x509v3-ecdsa-sha2-nistp256, x509v3-ecdsa-sha2-nistp384</u>] as its public key algorithm(s) and rejects all other public key algorithms.

FCS_SSHS_EXT.1.6

The TSF shall ensure that the SSH transport implementation uses [<u>hmac-sha1, hmac-sha2-256, hmac-sha2-512</u>] and [<u>no other MAC algorithms</u>] as its MAC algorithm(s) and rejects all other MAC algorithm(s).

FCS_SSHS_EXT.1.7

The TSF shall ensure that [ecdh-sha2-nistp256] and [ecdh-sha2-nistp384, ecdh-sha2-nistp521] are the only allowed key exchange methods used for the SSH protocol.

FCS_SSHS_EXT.1.8

The TSF shall ensure that within SSH connections the same session keys are used for a threshold of no longer than one hour, and no more than one gigabyte of transmitted data. After either of the thresholds are reached a rekey needs to be performed.

6.3.2.11 FCS_TLSC_EXT.2 TLS Client Protocol with Authentication

FCS_TLSC_EXT.2.1

The TSF shall implement [<u>TLS 1.2 (RFC 5246), TLS 1,1(RFC 4346)</u>] supporting the following ciphersuites:

Mandatory Ciphersuites:

TLS_RSA_WITH_AES_128_CBC_SHA as defined in RFC 3268

Optional Ciphersuites:

- [TLS_RSA_WITH_AES_256_CBC_SHA as defined in RFC 3268
- <u>TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA as defined in RFC 4492</u>
- <u>TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA as defined in RFC 4492</u>
- <u>TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA as defined in RFC 4492</u>
- <u>TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA as defined in RFC 4492</u>
- <u>TLS_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5246</u>
- <u>TLS_RSA_WITH_AES_256_CBC_SHA256 as defined in RFC 5246</u>
- <u>TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5289</u>
- <u>TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 as defined in RFC 5289</u>
- <u>TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289</u>
- <u>TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289</u>
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289
- <u>TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289</u>]

FCS_TLSC_EXT.2.2

The TSF shall verify that the presented identifier matches the reference identifier according to RFC 6125.

FCS_TLSC_EXT.2.3

The TSF shall only establish a trusted channel if the peer certificate is valid.

FCS_TLSC_EXT.2.4

The TSF shall present the Supported Elliptic Curves Extension in the Client Hello with the following NIST curves: [secp256r1, secp384r1, secp521r1] and no other curves.

FCS_TLSC_EXT.2.5

The TSF shall support mutual authentication using x.509v3 certificates.

6.3.3 Class FIA: Identification and Authentication

6.3.3.1 FIA_PMG_EXT.1 Password Management

FIA_PMG_EXT.1.1

The TSF shall provide the following password management capabilities for administrative passwords:

- Passwords shall be able to be composed of any combination of upper and lower case letters, numbers, and the following special characters: ["!", "@", "#", "\$", "%", "^", "&", "*", "(", ")"];
- 2. Minimum password length shall settable by the Security Administrator, and support passwords of 15 characters or greater.

6.3.3.2 FIA_UAU_EXT.2 Password-Based Authentication Mechanism

FIA_UAU_EXT.2.1

The TSF shall provide a local password-based authentication mechanism, [[SSH public key-based authentication, remote password-based authentication]] to perform administrative user authentication.

6.3.3.3 FIA_UAU.7 Protected Authentication Feedback

FIA_UAU.7.1

The TSF shall provide only obscured feedback to the administrative user while the authentication is in progress at the local console.

6.3.3.4 FIA_UIA_EXT.1 User Identification and Authentication

FIA_UIA_EXT.1.1

The TSF shall allow the following actions prior to requiring the non-TOE entity to initiate the identification and authentication process:

- Display the warning banner in accordance with FTA_TAB.1;
- [<u>no other actions</u>]

FIA_UIA_EXT.1.2

The TSF shall require each administrative user to be successfully identified and authenticated before allowing any other TSF-mediated actions on behalf of that administrative user.

6.3.3.5 FIA_X509_EXT.1 X509 Certificate Validation

FIA_X509_EXT.1.1

The TSF shall validate certificates in accordance with the following rules:

- RFC 5280 certificate validation and certificate path validation.
- The certificate path must terminate with a trusted CA certificate.
- The TSF shall validate a certificate path by ensuring the presence of the basicConstraints extension and that the CA flag is set to TRUE for all CA certificates.
- The TSF shall validate the revocation status of the certificate using [the Online Certificate Status Protocol (OCSP) as specified in RFC 2560].
- The TSF shall validate the extendedKeyUsage field according to the following rules:
 - Certificates used for trusted updates and executable code integrity verification shall have the Code Signing purpose (id-kp 3 with OID 1.3.6.1.5.5.7.3.3) in the extendedKeyUsage field.
 - Server certificates presented for TLS shall have the Server Authentication purpose (id-kp 1 with OID 1.3.6.1.5.5.7.3.1) in the extendedKeyUsage field.
 - Client certificates presented for TLS shall have the Client Authentication purpose (idkp 2 with OID 1.3.6.1.5.5.7.3.2) in the extendedKeyUsage field.
 - OCSP certificates presented for OCSP responses shall have the OCSP Signing purpose (id-kp 9 with OID 1.3.6.1.5.5.7.3.9) in the extendedKeyUsage field.

FIA_X509_EXT.1.2

The TSF shall only treat a certificate as a CA certificate if the basicConstraints extension is present and the CA flag is set to TRUE.

6.3.3.6 FIA_X509_EXT.2 X509 Certificate Authentication

FIA_X509_EXT.2.1

The TSF shall use X.509v3 certificates as defined by RFC 5280 to support authentication for [<u>TLS</u>, <u>SSH</u>], and [<u>no additional uses</u>].

FIA_X509_EXT.2.2

When the TSF cannot establish a connection to determine the validity of a certificate, the TSF shall [not accept the certificate].

6.3.3.7 FIA_X509_EXT.3 X509 Certificate Requests

FIA_X509_EXT.3.1

The TSF shall generate a Certificate Request Message as specified by RFC 2986 and be able to provide the following information in the request: public key and [Common Name, Organization, Organizational Unit, Country].

FIA_X509_EXT.3.2

The TSF shall validate the chain of certificates from the Root CA upon receiving the CA Certificate Response.

6.3.4 Class FMT: Security Management

6.3.4.1 FMT_MOF.1(1)/Audit Management of Security Functions Behavior

FMT_MOF.1.1(1)/Audit

The TSF shall restrict the ability to determine the behavior of, modify the behavior of the functions transmission of audit data to an external IT entity to Security Administrators.

6.3.4.2 FMT_MOF.1(1)/TrustedUpdate Management of Security Functions Behavior

FMT_MOF.1.1(1)/TrustedUpdate

The TSF shall restrict the ability to enable the functions to perform manual update to Security Administrators.

6.3.4.3 FMT_MTD.1 Management of TSF Data

FMT_MTD.1.1

The TSF shall restrict the ability to manage the TSF data to the Security Administrators.

6.3.4.4 FMT_MTD.1/AdminAct Management of TSF Data

FMT_MTD.1.1/AdminAct

The TSF shall restrict the ability to modify, delete, generate/import the cryptographic keys to Security Administrators.

6.3.4.5 FMT_SMF.1 Specification of Management Functions

FMT_SMF.1.1

The TSF shall be capable of performing the following management functions:

- Ability to administer the TOE locally and remotely;
- Ability to configure the access banner;
- Ability to configure the session inactivity time before session termination or locking;
- Ability to update the TOE, and to verify the updates using [digital signature] capability prior to installing those updates;
- [Ability to configure audit behavior;
- <u>Ability to configure the cryptographic functionality;</u>
- <u>Ability to configure thresholds for SSH rekeying</u>]

6.3.4.6 FMT_SMR.2 Restrictions on Security Roles

FMT_SMR.2.1

The TSF shall maintain the roles:

• Security Administrator.

FMT_SMR.2.2

The TSF shall be able to associate users with roles.

FMT_SMR.2.3

The TSF shall ensure that the conditions

- Security Administrator role shall be able to administer the TOE locally;
- Security Administrator role shall be able to administer the TOE remotely

are satisfied.

6.3.5 Class FPT: Protection of the TSF

6.3.5.1 FPT_APW_EXT.1 Protection of Administrator Passwords

FPT_APW_EXT.1.1

The TSF shall store passwords in non-plaintext form.

FPT_APW_EXT.1.2

The TSF shall prevent the reading of plaintext passwords.

6.3.5.2 FPT_SKP_EXT.1 Protection of TSF Data (for reading of all symmetric keys)

FPT_SKP_EXT.1.1

The TSF shall prevent reading of all pre-shared keys, symmetric keys, and private keys.

6.3.5.3 FPT_STM.1 Reliable Time Stamps

FPT_STM.1.1

The TSF shall be able to provide reliable time stamps.

6.3.5.4 FPT_TST_EXT.1 TSF Testing

FPT_TST_EXT.1.1

The TSF shall run a suite of the following self-tests [during initial start-up (on power on)] to demonstrate the correct operation of the TSF: [*software integrity, cryptographic module integrity, hardware integrity*].

6.3.5.5 FPT_TUD_EXT.1 Trusted Update

FPT_TUD_EXT.1.1

The TSF shall provide Security Administrators the ability to query the currently executing version of the TOE firmware/software and [the most recently installed version of the TOE firmware/software].

FPT_TUD_EXT.1.2

The TSF shall provide Security Administrators the ability to manually initiate updates to TOE firmware/software and [no other update mechanism].

FPT_TUD_EXT.1.3

The TSF shall provide means to authenticate firmware/software updates to the TOE using a [digital signature] prior to installing those updates.

6.3.6 Class FTA: TOE Access

6.3.6.1 FTA_SSL_EXT.1 TSF-initiated Session Locking

FTA_SSL_EXT.1.1

The TSF shall, for local interactive sessions, [terminate the session] after a Security Administratorspecified time period of inactivity.

6.3.6.2 FTA_SSL.3 TSF-initiated Termination

FTA_SSL.3.1

The TSF shall terminate a remote interactive session after a Security Administrator-configurable time interval of session inactivity.

6.3.6.3 FTA_SSL.4 User-initiated Termination

FTA_SSL.4.1

The TSF shall allow Administrator-initiated termination of the Administrator's own interactive session.

6.3.6.4 FTA_TAB.1 TOE Access Banner

FTA_TAB.1.1

Before establishing an administrative user session, the TSF shall display a Security Administratorspecified advisory notice and consent warning message regarding use of the TOE.

6.3.7 Class FTP: Trusted Path/Channels

6.3.7.1 FTP_ITC.1 Inter-TSF Trusted Channel

FTP_ITC.1.1

The TSF shall be capable of using [<u>SSH, TLS</u>] to provide a trusted communication channel between itself and authorized IT entities supporting the following capabilities: audit server, [<u>authentication</u> <u>server</u>, [<u>SFTP Server</u>]] that is logically distinct from other communication channels and provides assured identification of its end points and protection of the channel data from disclosure and detection of modification of the channel data.

FTP_ITC.1.2

The TSF shall permit the TSF, or the authorized IT entities to initiate communication via the trusted channel.

FTP_ITC.1.3

The TSF shall initiate communication via the trusted channel for [*audit transfer, authentication requests, software updates*].

6.3.7.2 FTP_TRP.1 Trusted Path

FTP_TRP.1.1

The TSF shall be capable of using [<u>SSH</u>] to provide a communication path between itself and authorized remote administrators that is logically distinct from other communication paths and provides assured identification of its end points and protection of the communicated data from disclosure and provides detection of modification of the channel data.

FTP_TRP.1.2

The TSF shall permit remote administrators to initiate communication via the trusted path.

FTP_TRP.1.3

The TSF shall require the use of the trusted path for initial administrator authentication and all remote administration actions.

6.4 Statement of Security Functional Requirements Consistency

The Security Functional Requirements included in the ST represent all required SFRs specified in the claimed PP, a subset of the optional requirements, and all applicable selection-based requirements that have been included as specified for the claimed PP.

7 Security Assurance Requirements

This section identifies the Security Assurance Requirements (SARs) that are claimed for the TOE. The SARs which are claimed are in exact conformance with the NDcPP.

7.1 Class ADV: Development

7.1.1 Basic Functional Specification (ADV_FSP.1)

7.1.1.1 *Developer action elements:*

ADV_FSP.1.1D

The developer shall provide a functional specification.

ADV_FSP.1.2D

The developer shall provide a tracing from the functional specification to the SFRs.

7.1.1.2 *Content and presentation elements:*

ADV_FSP.1.1C

The functional specification shall describe the purpose and method of use for each SFR-enforcing and SFR-supporting TSFI.

ADV_FSP.1.2C

The functional specification shall identify all parameters associated with each SFR-enforcing and SFR-supporting TSFI.

ADV_FSP.1.3C

The functional specification shall provide rationale for the implicit categorization of interfaces as SFR-non-interfering.

ADV_FSP.1.4C

The tracing shall demonstrate that the SFRs trace to TSFIs in the functional specification.

7.1.1.3 *Evaluator action elements:*

ADV_FSP.1.1E

The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

ADV_FSP.1.2E

The evaluator shall determine that the functional specification is an accurate and complete instantiation of the SFRs.

7.2 Class AGD: Guidance Documentation

7.2.1 Operational User Guidance (AGD_OPE.1)

7.2.1.1 Developer action elements:

AGD_OPE.1.1D

The developer shall provide operational user guidance.

7.2.1.2 Content and presentation elements:

AGD_OPE.1.1C

The operational user guidance shall describe, for each user role, the user-accessible functions and privileges that should be controlled in a secure processing environment, including appropriate warnings.

AGD_OPE.1.2C

The operational user guidance shall describe, for each user role, how to use the available interfaces provided by the TOE in a secure manner.

AGD_OPE.1.3C

The operational user guidance shall describe, for each user role, the available functions and interfaces, in particular all security parameters under the control of the user, indicating secure values as appropriate.

AGD_OPE.1.4C

The operational user guidance shall, for each user role, clearly present each type of security-relevant event relative to the user-accessible functions that need to be performed, including changing the security characteristics of entities under the control of the TSF.

AGD_OPE.1.5C

The operational user guidance shall identify all possible modes of operation of the TOE (including operation following failure or operational error), their consequences and implications for maintaining secure operation.

AGD_OPE.1.6C

The operational user guidance shall, for each user role, describe the security measures to be followed in order to fulfill the security objectives for the operational environment as described in the ST.

AGD_OPE.1.7C

The operational user guidance shall be clear and reasonable.

7.2.1.3 *Evaluator action elements:*

AGD_OPE.1.1E

The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

7.2.2 Preparative Procedures (AGD_PRE.1)

7.2.2.1 Developer action elements:

AGD_PRE.1.1D

The developer shall provide the TOE including its preparative procedures.

7.2.2.2 Content and presentation elements:

AGD_PRE.1.1C

The preparative procedures shall describe all the steps necessary for secure acceptance of the delivered TOE in accordance with the developer's delivery procedures.

AGD_PRE.1.2C

The preparative procedures shall describe all the steps necessary for secure installation of the TOE and for the secure preparation of the operational environment in accordance with the security objectives for the operational environment as described in the ST.

7.2.2.3 Evaluator action elements:

AGD_PRE.1.1E

The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

AGD_PRE.1.2E

The evaluator shall apply the preparative procedures to confirm that the TOE can be prepared securely for operation.

7.3 Class ALC: Life Cycle Supports

7.3.1 Labeling of the TOE (ALC_CMC.1)

7.3.1.1 Developer action elements:

ALC_CMC.1.1D

The developer shall provide the TOE and a reference for the TOE.

7.3.1.2 *Content and presentation elements:*

ALC_CMC.1.1C

The TOE shall be labeled with its unique reference.

7.3.1.3 Evaluator action elements:

ALC_CMC.1.1E

The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

7.3.2 TOE CM Coverage (ALC_CMS.1)

7.3.2.1 *Developer action elements:*

ALC_CMS.1.1D

The developer shall provide a configuration list for the TOE.

7.3.2.2 Content and presentation elements:

ALC_CMS.1.1C

The configuration list shall include the following: the TOE itself; and the evaluation evidence required by the SARs.

ALC_CMS.1.2C

The configuration list shall uniquely identify the configuration items.

7.3.2.3 Evaluator action elements:

ALC_CMS.1.1E

The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

7.4 Class ATE: Tests

7.4.1 Independent Testing - Conformance (ATE_IND.1)

7.4.1.1 Developer action elements:

ATE_IND.1.1D

The developer shall provide the TOE for testing.

7.4.1.2 *Content and presentation elements:*

ATE_IND.1.1C

The TOE shall be suitable for testing.

7.4.1.3 *Evaluator action elements:*

ATE_IND.1.1E

The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

ATE_IND.1.2E

The evaluator shall test a subset of the TSF to confirm that the TSF operates as specified.

7.5 Class AVA: Vulnerability Assessment

7.5.1 Vulnerability Survey (AVA_VAN.1)

7.5.1.1 Developer action elements:

AVA_VAN.1.1D

The developer shall provide the TOE for testing.

7.5.1.2 Content and presentation elements:

AVA_VAN.1.1C

The TOE shall be suitable for testing.

7.5.1.3 Evaluator action elements:

AVA_VAN.1.1E

The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

AVA_VAN.1.2E

The evaluator shall perform a search of public domain sources to identify potential vulnerabilities in the TOE.

AVA_VAN.1.3E

The evaluator shall conduct penetration testing, based on the identified potential vulnerabilities, to determine that the TOE is resistant to attacks performed by an attacker possessing Basic attack potential.

8 TOE Summary Specification

The following sections identify the security functions of the TOE and describe how the TSF meets each claimed SFR. They include Security Audit, Cryptographic Support, Identification and Authentication, Security Management, Protection of the TSF, TOE Access, and Trusted Path/Channels.

8.1 Security Audit

8.1.1 FAU_GEN.1:

The TOE has the ability to generate audit records of behavior that occurs within the TSF. The audit records are sent to a remote syslog server and can also be sent to an SFTP server. The user can enable and disable logs (security log, event log, and command log) that are sent to an SFTP server.

The TOE contains mechanisms which generate audit data based upon successful and unsuccessful management actions by all authorized users of the TOE. The startup and shutdown of the TOE's audit functionality is synonymous with the startup and shutdown of the TOE, which is recorded in the TOE's audit records.

All actions performed on the TOE are logged and the table below represents what is being logged and where the event is being stored.

Auditable Event	Location	Sample Data
Failure to establish an SSH session	Security Log	799: Wed Mar 29 17:07:45.497 2017 [local] P Sev:8 chassis(1): :sshd[8787]: fatal: Unable to negotiate with 10.41.71.103: no matching cipher found. Their offer: 3des-cbc [preauth]
		858: Wed Mar 29 18:36:03.400 2017 [local] P Sev:8 chassis(1): :sshd[5734]: fatal: Unable to negotiate with 10.41.71.103: no matching host key type found. Their offer: ssh-dss [preauth]
		1383: Thu Mar 30 15:16:48.349 2017 [local] P Sev:8 chassis(1): :sshd[2506]: fatal: Unable to negotiate with 10.41.71.103: no matching MAC found. Their offer: [preauth]
		1167: Wed Mar 29 20:50:16.922 2017 [local] P Sev:8 chassis(1): :sshd[5764]: fatal: Unable to negotiate with 10.41.71.103: no matching key exchange method found. Their offer: diffie-hellman-group1-sha1,ext-info-c [preauth]
	Syslog	Apr 11 13:48:05 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SSH-6-SSHD_LOG: chassis(1): :sshd[5253]: fatal: Unable to negotiate with 10.41.71.103: no matching cipher found. Their offer: 3des-cbc [preauth]
		Apr 11 13:53:56 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SSH-6-SSHD_LOG: chassis(1): :sshd[6935]: fatal: Unable to negotiate with 10.41.71.103: no matching MAC found. Their offer: [preauth]

The following table lists the auditable events defined by this component, the location(s) where the TSF generates audit records for the events, and examples of audit records for that particular event and type.

		Apr 11 13:51:03 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SSH-6-SSHD_LOG: chassis(1): :sshd[6083]: fatal: Unable to negotiate with 10.41.71.103: no matching host key type found. Their offer: ssh-dss [preauth] Apr 11 13:45:44 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SSH-6-SSHD_LOG: chassis(1): :sshd[4584]: fatal: Unable to negotiate with 10.41.71.103: no matching key exchange method found. Their offer: diffie- hellman-group1-sha1,ext-info-c [preauth]
Failure to establish a TLS session	Security Log	18580: Mon Apr 17 14:55:02.386 2017 [local] P Sev:8 radsec: RadSec Error: Error during TLS connect : Connection refused. Server: 10.41.71.110:2083
	Syslog	Apr 17 14:55:02 localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 RADSEC-6-T_L_S_ERROR: radsec: RadSec Error: Error during TLS connect : Connection refused. Server: 10.41.71.110:2083 285: Wed Apr 5 14:10:59.512 2017 [local] P Sev:8 chassis(1): :SyslogTLS Error: Error during TLS connect : Connection refused Dest: 10.41.71.100:6514
All uses of the authentication mechanism	Security Log	 118: Tue Dec 22 20:21:06.798 2015 [local] P Sev:8 chassis(1): :sshd[3085]: Incoming connection from 10.41.71.103 port 64898 on 10.41.71.101 port 22 119: Tue Dec 22 20:21:11.116 2015 [local] P Sev:8 chassis(1): :User successfully logged in from IP 10.41.71.103 user name 'su' 126: Tue Dec 22 20:24:08.260 2015 [local] P Sev:8 chassis(1): :sshd[3946]: Incoming connection from 10.41.71.103 port 64933 on 10.41.71.101 port 22 127: Tue Dec 22 20:24:08.582 2015 [local] P Sev:6 chassis(1): :User authentication failed from IP shell user name 'su' 128: Tue Dec 22 20:24:11.516 2015 [local] P Sev:8 chassis(1): :sshd[3947]: Failed user authentication method, partial=0 next methods="publickey,password,keyboard-interactive"
	Syslog	Apr 11 14:17:11 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SEC-6-LOGIN_ACCEPTED: chassis(1): :User successfully logged in from IP 10.41.71.103 user name 'su' Apr 11 14:23:05 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SEC-4-INTRUSION_DETECTION: chassis(1): :User authentication failed from IP shell user name 'su' Apr 11 14:25:43 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SEC-6-LOGIN_ACCEPTED: chassis(1): :User successfully logged in from IP Console user name 'su'

		Apr 11 14:26:35 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SEC-4-INTRUSION_DETECTION: chassis(1): :User authentication failed from IP ttyS0 user name 'su'
Unsuccessful attempt to validate a certificate	Security Log	18547: Mon Apr 17 14:01:51.339 2017 [local] P Sev:6 chassis(1): SSH IP 10.41.71.106 User su:CA certificate install fail: Not a CA certificate
	Syslog	Apr 17 14:01:51 localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SEC-4-INVALID_C_A: chassis(1): SSH IP 10.41.71.106 User su:CA certificate install fail: Not a CA certificate
Modification of behavior of the transmission of audit data to an external IT entity	Security Log	17903: Thu Apr 13 18:15:14.343 2017 [local] P Sev:7 syslogTLS: Local RS-232 User su: SyslogTLS admin state set to disabled
		17904: Thu Apr 13 18:15:18.212 2017 [local] P Sev:7 syslogTLS: Local RS-232 User su: SyslogTLS admin state set to enabled
	Event Log	April 13, 2017 18:15:14.343 [local] Sev:7 syslogTLS: Local RS-232 User su: SyslogTLS admin state set to disabled
		April 13, 2017 18:15:18.212 [local] Sev:7 syslogTLS: Local RS-232 User su: SyslogTLS admin state set to enabled
	Command Log	6545: system security log transfer enable
		6546: command-log transfer enable
		6547: logging transfer enable
		6555: syslog tls disable
		6556: syslog tls enable
	Syslog	Apr 11 16:55:58 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 LOGGING-5- COMMAND_LOG_SET: chassis(1): Local RS-232 Console User su:Command log enabled
		Apr 11 16:55:53 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 LOGGING-5- COMMAND_LOG_SET: chassis(1): Local RS-232 Console User su:Command log disabled
Initiation of Update	Command Log	44: software install package-path rel_saos8700_8.5.0_ga215.tgz default-sftp-server start now
	Syslog	Apr 11 16:35:28 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SWXGRADE-5- SOFTWARE_INSTALL: swXGrade: Local RS-232 User su: Software install request, package-path: SFTP:10.41.71.100/saos-08-05- 223/rel_saos8700_8.5.0_ga223.tgz source: 10.41.71.100

43.74. N01 Apr 3 19:00:29:001 2017 (004) F 3eV.7 (naissi(1)): SSH IP 10:41.71.103 User su:Ssh client user generate key, user: su Apr 5 16:22:30 localhost [Local] 10:41.71.101 2c:39:c1:b9:c8:00 8700 SSH-5X509_CERT_INSTALLED: chassis(1): :Ssh X509 certificate installed for cienal Command Log 431: system shell set global-inactivity-timer on 432: system shell set global-inactivity-timeout 5 Syslog Apr 11 16:21:25 ip6-localhost [Local] 10:41.71.101 2c:39:c1:b9:c8:00 8700 CHASSIS-5- SYSTEM_CILOBAL_INACTIVITY_TIMER_ENABLE: chassis(1): SIP 10:41.71.103 User user1:System Global inactivity Timer Enable Modification, deletion, generation/import of cryptographic keys Security Log 267: Tue Mar 28 14:48:39.531 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User test1:Ssh server key delete 268: Tue Mar 28 14:48:43.509 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User test1:Ssh Generate Key 5303: ssh server key delete 2530: :ssh server key delete 5304: ssh server key delete 5304: ssh server key delete 253vcl:b9:c8:00 8700 SSH-5-SSH, KEY_DELETE: chassis(1): Local RS-232 Console User test1:Ssh Generate Key 268: Tue Mar 28 14:35:00 2017 [local] 10:41.71.101 2c:39:c1:b9:c8:00 8700 SSH-5-SSH KEY_DELETE: chassis(1): Local RS-232 Console User test3: System TimeDate Set From Tue Arr 28 14:35:00 2017 Changes to the time Security Log 259: Tue Mar 28 14:35:00.073 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User test1:System TimeDate Set From Tue Mar 28 14:33:33 2017 To Tue Mar 28 14:35:00 2017 Event Log </th <th>All management activities of the TSF</th> <th>Security Log</th> <th> 14983: Mon Apr 10 19:26:19.499 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User test1:System Global Inactivity Timer Enable 14984: Mon Apr 10 19:26:37.507 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User test1:System Global Inactivity Timeout Set 60 18705: Mon Apr 17 16:32:00.590 2017 [local] P Sev:6 chassis(1): SSH IP 10.41.71.103 User su:Shell banner has been modified: Login banner file line was modified 4374: Mon Apr 3 19:06:29.801 2017 [local] P Sev:7 chassis(1): </th>	All management activities of the TSF	Security Log	 14983: Mon Apr 10 19:26:19.499 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User test1:System Global Inactivity Timer Enable 14984: Mon Apr 10 19:26:37.507 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User test1:System Global Inactivity Timeout Set 60 18705: Mon Apr 17 16:32:00.590 2017 [local] P Sev:6 chassis(1): SSH IP 10.41.71.103 User su:Shell banner has been modified: Login banner file line was modified 4374: Mon Apr 3 19:06:29.801 2017 [local] P Sev:7 chassis(1):
432: system shell set global-inactivity-timeout 5SyslogApr 11 16:21:25 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 CHASSIS-5- SYSTEM_GLOBAL_INACTIVITY_TIMER_ENABLE: chassis(1): SSH IP 10.41.71.103 User user1:System Global Inactivity Timer EnableModification, deletion, generation/import of cryptographic keysSecurity Log267: Tue Mar 28 14:48:39.531 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User test1:Ssh server key delete 268: Tue Mar 28 14:48:43.509 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User test1:Ssh Generate KeyCommand Log5303: ssh server key delete 5304: ssh server key delete 5304: ssh server key delete 5304: ssh server key delete (compared Log)SyslogApr 11 15:26:15 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SSH-5-SSH_KEY_DELETE: chassis(1): Local RS-232 Console User su:Ssh server key delete Apr 11 15:26:32 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SSH-5-GENERATE_KEY: chassis(1): Local RS-232 Console User su:Ssh Generate KeyChanges to the timeSecurity Log259: Tue Mar 28 14:35:00.073 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User su:Ssh Generate KeyChanges to the timeSecurity Log259: Tue Mar 28 14:35:00.073 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User su:Ssh Generate KeyChanges to the timeSecurity Log259: Tue Mar 28 14:35:00.073 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User su:Ssh Generate KeyChanges to the timeSecurity Log259: Tue Mar 28 14:35:00.073 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User su:Ssh Generate KeyChanges to the timeSecurity Log259: Tue Mar 28 14:35:00.073 2017 [local] P Sev:7			SSH IP 10.41.71.103 User su:Ssh client user generate key, user: su Apr 5 16:22:30 localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SSH-5-X509_CERT_INSTALLED:
432: system shell set global-inactivity-timeout 5SyslogApr 11 16:21:25 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 CHASSIS-5- SYSTEM_GLOBAL_INACTIVITY_TIMER_ENABLE: chassis(1): SSH IP 10.41.71.103 User user1:System Global Inactivity Timer EnableModification, deletion, generation/import of cryptographic keysSecurity Log267: Tue Mar 28 14:48:39.531 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User test1:Ssh server key delete 268: Tue Mar 28 14:48:43.509 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User test1:Ssh Generate KeyCommand Log5303: ssh server key delete 5304: ssh server key delete 5304: ssh server key delete 5304: ssh server key delete (compared Log)SyslogApr 11 15:26:15 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SSH-5-SSH_KEY_DELETE: chassis(1): Local RS-232 Console User su:Ssh server key delete Apr 11 15:26:32 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SSH-5-GENERATE_KEY: chassis(1): Local RS-232 Console User su:Ssh Generate KeyChanges to the timeSecurity Log259: Tue Mar 28 14:35:00.073 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User su:Ssh Generate KeyChanges to the timeSecurity Log259: Tue Mar 28 14:35:00.073 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User su:Ssh Generate KeyChanges to the timeSecurity Log259: Tue Mar 28 14:35:00.073 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User su:Ssh Generate KeyChanges to the timeSecurity Log259: Tue Mar 28 14:35:00.073 2017 [local] P Sev:7 chassis(1): 		Command Log	421; system shall set global inactivity timer on
2c:39:c1:b9:c8:00 8700 CHASSIS-5- SYSTEM_GLOBAL_INACTIVITY_TIMER_ENABLE: chassis(1): SSH IP 10.41.71.103 User user1:System Global Inactivity Timer EnableModification, deletion, generation/import of cryptographic keysSecurity Log267: Tue Mar 28 14:48:39.531 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User test1:Ssh server key delete 268: Tue Mar 28 14:48:43.509 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User test1:Ssh Generate KeyCommand Log5303: ssh server key delete 5304: ssh server key delete 5304: ssh server key generate key-type ecdsa256SyslogApr 11 15:26:15 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SSH-5-SSH_KEY_DELETE: chassis(1): Local RS-232 Console User su:Ssh server key delete Apr 11 15:26:32 ip6-localhost [Local] 10.41.71.101 22:39:c1:b9:c8:00 8700 SSH-5-GENERATE_KEY: chassis(1): Local RS-232 Console User su:Ssh Generate KeyChanges to the timeSecurity Log259: Tue Mar 28 14:35:00.073 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User test1:System TimeDate Set From Tue Mar 28 14:33:33 2017 To Tue Mar 28 14:35:00 2017Event Log259: Tue Mar 28 14:33:33 2017 To Tue Mar 28 14:35:00 2017			
generation/import of cryptographic keysLocal RS-232 Console User test1:Ssh server key delete 268: Tue Mar 28 14:48:43.509 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User test1:Ssh Generate KeyCommand Log5303: ssh server key delete 5304: ssh server key generate key-type ecdsa256SyslogApr 11 15:26:15 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SSH-5-SSH_KEY_DELETE: chassis(1): Local RS-232 Console User su:Ssh server key delete Apr 11 15:26:32 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SSH-5-GENERATE_KEY: chassis(1): Local RS-232 Console User su:Ssh Generate KeyChanges to the timeSecurity Log Event Log259: Tue Mar 28 14:35:00.073 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User test1:System TimeDate Set From Tue Mar 28 14:33:33 2017 To Tue Mar 28 14:35:00 2017Event Log259: Tue Mar 28 14:35:00.073 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User test1:System TimeDate Set From Tue Mar 28 14:33:33 2017 To Tue Mar 28 14:35:00 2017		Syslog	2c:39:c1:b9:c8:00 8700 CHASSIS-5- SYSTEM_GLOBAL_INACTIVITY_TIMER_ENABLE: chassis(1): SSH IP 10.41.71.103 User user1:System Global
Local RS-232 Console User test1:Ssh Generate KeyCommand Log5303: ssh server key delete5304: ssh server key generate key-type ecdsa256SyslogApr 11 15:26:15 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SSH-5-SSH_KEY_DELETE: chassis(1): Local RS-232 Console User su:Ssh server key delete Apr 11 15:26:32 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SSH-5-GENERATE_KEY: chassis(1): Local RS-232 Console User su:Ssh Generate KeyChanges to the timeSecurity Log259: Tue Mar 28 14:35:00.073 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User test1:System TimeDate Set From 	generation/import of	Security Log	Local RS-232 Console User test1:Ssh server key delete
SyslogSigned Signed			
SyslogApr 11 15:26:15 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SSH-5-SSH_KEY_DELETE: chassis(1): Local RS-232 Console User su:Ssh server key delete Apr 11 15:26:32 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SSH-5-GENERATE_KEY: chassis(1): Local RS-232 Console User su:Ssh Generate KeyChanges to the timeSecurity Log259: Tue Mar 28 14:35:00.073 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User test1:System TimeDate Set From Tue Mar 28 14:33:33 2017 To Tue Mar 28 14:35:00 2017Event Log259: Tue Mar 28 14:35:00.073 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User test1:System TimeDate Set From Tue Mar 28 14:33:33 2017 To Tue Mar 28 14:35:00 2017		Command Log	5303: ssh server key delete
2c:39:c1:b9:c8:00 8700 SSH-5-SSH_KEY_DELETE: chassis(1): Local RS-232 Console User su:Ssh server key delete Apr 11 15:26:32 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SSH-5-GENERATE_KEY: chassis(1): Local RS-232 Console User su:Ssh Generate KeyChanges to the timeSecurity Log259: Tue Mar 28 14:35:00.073 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User test1:System TimeDate Set From Tue Mar 28 14:33:33 2017 To Tue Mar 28 14:35:00 2017Event Log259: Tue Mar 28 14:35:00.073 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User test1:System TimeDate Set From Tue Mar 28 14:33:33 2017 To Tue Mar 28 14:35:00 2017			5304: ssh server key generate key-type ecdsa256
2c:39:c1:b9:c8:00 8700 SSH-5-GENERATE_KEY: chassis(1): Local RS-232 Console User su:Ssh Generate KeyChanges to the timeSecurity Log259: Tue Mar 28 14:35:00.073 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User test1:System TimeDate Set From Tue Mar 28 14:33:33 2017 To Tue Mar 28 14:35:00 2017Event Log259: Tue Mar 28 14:35:00.073 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User test1:System TimeDate Set From Tue Mar 28 14:33:33 2017 To Tue Mar 28 14:35:00 2017		Syslog	2c:39:c1:b9:c8:00 8700 SSH-5-SSH_KEY_DELETE:
Local RS-232 Console User test1:System TimeDate Set From Tue Mar 28 14:33:33 2017 To Tue Mar 28 14:35:00 2017Event Log259: Tue Mar 28 14:35:00.073 2017 [local] P Sev:7 chassis(1): Local RS-232 Console User test1:System TimeDate Set From Tue Mar 28 14:33:33 2017 To Tue Mar 28 14:35:00 2017			2c:39:c1:b9:c8:00 8700 SSH-5-GENERATE_KEY: chassis(1):
Local RS-232 Console User test1:System TimeDate Set From Tue Mar 28 14:33:33 2017 To Tue Mar 28 14:35:00 2017	Changes to the time	Security Log	Local RS-232 Console User test1:System TimeDate Set From
Command Log 5241: system set time 15:33:30		Event Log	Local RS-232 Console User test1:System TimeDate Set From
		Command Log	5241: system set time 15:33:30

	Syslog	Apr 11 15:33:30 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 CHASSIS-5- SYSTEM_TIME_DATE_SET: chassis(1): Local RS-232 Console User su:System TimeDate Set From Tue Apr 11 14:34:25 2017 To Tue Apr 11 15:33:30 2017 Apr 11 15:33:37 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 CHASSIS-4- TIME_CHANGED_FORWARD: chassis(1): :System time changed forward by more than 5secs
Any attempts at unlocking of an interactive session		mination of a remote session by the session locking mechanism" F will terminate idle interactive sessions, not lock them.
The termination of a remote session by the session locking mechanism	Security Log	430: Tue Mar 28 21:01:01.277 2017 [local] P Sev:8 chassis(1): :User logged out from IP 10.41.71.103 user name 'su' due to inactivity
	Syslog	Apr 11 16:24:57 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SEC-6-KILL_LOGIN: chassis(1): :Login/Shell Process 3371 Terminated
The termination of an interactive session	Security Log	1175: Thu Mar 30 13:06:16.401 2017 [local] P Sev:8 chassis(1): :User logged out from IP Console user name 'su'
		1179: Thu Mar 30 13:11:43.941 2017 [local] P Sev:8 chassis(1): :User logged out from IP 10.41.71.103 user name 'su'
	Syslog	Apr 11 15:02:34 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SEC-6-LOGOUT: chassis(1): :User logged out from IP Console user name 'su'
		Apr 11 15:08:15 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SEC-6-LOGOUT: chassis(1): :User logged out from IP 10.41.71.103 user name 'user1'
Initiation of the trusted channel	Security Log	3228: Fri Mar 31 20:43:29.510 2017 [local] P Sev:7 chassis(1): :Software download request, server: 10.41.71.100, package- path: rel_saos8700_8.5.0_ga215.tgz, destination: rel_saos8700_8.5.0_ga215.tgz
	Syslog	Apr 11 16:35:28 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SWXGRADE-5- SOFTWARE_INSTALL: swXGrade: Local RS-232 User su: Software install request, package-path: SFTP:10.41.71.100/saos-08-05- 223/rel_saos8700_8.5.0_ga223.tgz source: 10.41.71.100
Termination of the trusted channel	Syslog	Apr 11 20:05:52 localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SYSLOGTLS-6- T_L_S_CONNECTION_CLOSED: chassis(1): :SyslogTLS connection closed normally. Collector: 10.41.71.100:6514
Failure of the trusted channel functions		to establish an SSH session" and "failure to establish a TLS depending on the specific protocol experiencing failure.

Initiation of the trusted path	Security Log	118: Tue Dec 22 20:21:06.798 2015 [local] P Sev:8 chassis(1): :sshd[3085]: Incoming connection from 10.41.71.103 port		
		64898 on 10.41.71.101 port 22		
		119: Tue Dec 22 20:21:11.116 2015 [local] P Sev:8 chassis(1): :User successfully logged in from IP 10.41.71.103 user name 'su'		
Termination of the trusted path	Security Log	1179: Thu Mar 30 13:11:43.941 2017 [local] P Sev:8 chassis(1): :User logged out from IP 10.41.71.103 user name 'su'		
	Syslog	DAEMON.INFO: Feb 22 06:11:06 [Local] 192.168.122.27 02:a8:7a:1b:00:00 8700 SSH-6-SSH_CLIENT_LOG: chassis(1): :ssh[]: Connection to 10.32.8.65 as 'su' completed, exit status 0		
Failure of the trusted path functions	Same as "failure	me as "failure to establish an SSH session" above.		
Modification of the behavior of the TSF	Same as "all management activities of the TSF" above.			
Resetting passwords	Security Log	4416: Mon Apr 3 19:55:32.882 2017 [local] P Sev:7 chassis(1): SSH IP 10.41.71.103 User su:User Password Set test10		
	Command Log	5254: user set user test1 echoless-password		
	Syslog	Apr 11 14:53:16 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SEC-5-USER_PASSWORD_SET: chassis(1): Local RS-232 Console User su:User Password Set test1		
Start-up and shutdown of the audit functions	Security Log	15742: Tue Apr 11 17:00:23.083 2017 [local] P Sev:7 logging: Local RS-232 User su: Security Log event number 0x1B000A disabled		
		15743: Tue Apr 11 17:00:32.439 2017 [local] P Sev:7 logging: Local RS-232 User su: Security Log event number 0x1B000A enabled		
	Command Log	5347: logging disable destination flash		
		5348: logging enable destination flash		
		5351: command-log disable		
		5352: command-log enable		
		1398: syslog tls disable collector cc-server-2.ciena.com		
		1400: syslog tls enable collector cc-server-2.ciena.com		
		5359: system security log disable event-id 0x1B000A		
		5360: system security log enable event-id 0x1B000A		

	Syslog	Apr 11 16:52:04 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 LOGGING-5- LOG_DESTINATION_ADMIN_STATE_SET: chassis(1): Local RS-232 Console User su:Log Destination Admin State Set destination flash admin state disabled Apr 11 16:52:13 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 LOGGING-5- LOG_DESTINATION_ADMIN_STATE_SET: chassis(1): Local RS-232 Console User su:Log Destination Admin State Set destination flash admin state enabled Apr 11 16:55:53 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 LOGGING-5- COMMAND_LOG_SET: chassis(1): Local RS-232 Console User su:Command log disabled Apr 11 16:55:58 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 LOGGING-5- COMMAND_LOG_SET: chassis(1): Local RS-232 Console User su:Command log enabled Apr 11 16:57:55 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SYSLOG-5- GLOBAL_ADMIN_STATE_SET: chassis(1): Local RS-232 Console User su:Syslog global admin state set disabled Apr 11 16:57:58 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SYSLOG-5- GLOBAL_ADMIN_STATE_SET: chassis(1): Local RS-232 Console User su:Syslog global admin state set disabled Apr 11 16:57:58 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 SYSLOG-5- GLOBAL_ADMIN_STATE_SET: chassis(1): Local RS-232 Console User su:Syslog global admin state set enabled Apr 11 17:00:23 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 UGGING-5- SEC_LOG_EVENT_STATE: logging: Local RS-232 User su: Security Log event number 0x1B000A disabled Apr 11 17:00:32 ip6-localhost [Local] 10.41.71.101 2c:39:c1:b9:c8:00 8700 LOGGING-5- SEC_LOG_EVENT_STATE: logging: Local RS-232 User su: Security Log event number 0x1B000A enabled	
		Security Log event number 0x1B000A enabled	
Administrative login and logout	Same as "all use of the authentication mechanism" and "termination of an interactive session" above.		
Security related configuration	Same as "all ma	nagement activities of the TSF" above.	
Table 12: Sample Audit Records			

Table 12: Sample Audit Records

Audit records are created when the administrator performs each of the management functions listed above via the CLI (local and remote). As shown in the table above, each audit record provides a timestamp, username and a description of the action performed including a success/failure indication.

8.1.2 FAU_GEN.2:

The TOE records the identity of the user associated with each audited event that occurred due to a user action in the audit record.

8.1.3 FAU_STG.1:

The TSF protects stored audit records in the security, event, and command logs by only allowing a user with the Super role to delete records from the trail. The Super role is also the only role that is authorized to view the security log, whereas the Admin role is the minimum privilege required to view event and command log data. The log can only be cleared in its entirety so any deleting of any individual records is not allowed. The TSF does not retain syslog data beyond a small temporary cache that the TLS secure syslog implementation uses to ensure that audit data is not lost during brief network outages. This data cannot be manually interacted with by any administrator.

8.1.4 **FAU_STG_EXT.1:**

The TSF provides the ability to securely transmit audit data to the Operational Environment without administrator intervention. When syslog audit events are generated they are immediately transmitted to the environmental syslog server over TLS. Any audit data that is stored locally in the security, event, and command logs will be transmitted over SSH to a remote SFTP server at an administratively configurable period interval. Security and events logs only differ in date format and command logs are only capturing the CLI syntax for configurations. Syslogs can be identified by a syslog header and can also contain any event, but can be configured to filter specific logs based on importance.

The SSH and TLS implementations used for this process conform to FCS_SSHC_EXT.1 and FCS_TLSC_EXT.2, respectively. Only a user with the Super role has permissions to configure the remote audit storage behavior.

The TOE is not an audit server; however, it can store audit data locally. Syslog data is only stored in a temporary buffer as part of the secure syslog implementation so this is not considered to be local storage. However, the security, event, and command logs are stored persistently on the TOE's local file system. When these log files are transferred to the remote SFTP server, the entire contents of the most recent log file are transferred.

When a log file reaches its allowed maximum size it is closed and renamed sequentially. A new log file is then opened as the current log. Once the number of log files reaches its configured maximum amount, the oldest log file is automatically deleted and the remaining log files roll over in order to allow the new file to be created. A user with the Super role also has the ability to manually delete log files. The maximum quantity and size for each log file is as follows:

- Security Log: up to 4 historical files with up to 5,000 entries per file
- Event Log: up to 4 historical files with up to 10,000 entries per file
- Command Log: up to 5 historical files with up to 2,500 entries per file

8.2 Cryptographic Support

8.2.1 FCS_CKM.1:

The TOE generates RSA and Elliptic Curve Diffie-Hellman (ECC) keys in accordance with FIPS PUB 186-4. The TOE generates cryptographic keys according to table 14 below. RSA supports 2048 bit key sizes. The ECC curves supported are P-256, P-384, and P-521. For SSH, the TOE only supports the

generation of RSA with 2048 bits. The TOE uses OpenSSL version 1.0.2j to support cryptographic algorithm certificates which has been tested on Ciena's hardware and software.

Algorithm/Protocol	TLS	SSHC	SSHS
Elliptic Curve Diffie-Hellman (ECC)	Х	Х	Х
RSA Key Establishment	Х		
RSA Digital Signatures	Х	Х	Х
Elliptic Curve Digital Signature Algorithm	Х	Х	Х
(ECDSA)			

Table 13: Cryptographic Key Generation

The TOE's key generation functions have the following CAVP certificates:

DSA: #1198

RSA: #2445

ECDSA: #1092

8.2.2 FCS_CKM.2:

The TOE implements NIST SP 800-56A conformant key establishment mechanisms for Elliptic Curve Diffie-Hellman (ECDH) key establishment schemes. Specifically, the TOE complies with the NIST SP 800-56A key agreement scheme (KAS) primitives that are defined in section 5.6 of the SP. In addition, the TOE implements RSA key establishment, conformant to NIST SP 800-56B. The TOE complies with sections 5.9, 6, and 8 of NIST SP 800-56B (including all subsections) for RSA key pair generation and key establishment. The TOE is able to generate RSA key pairs with a modulus of 2048 bits which has an equivalent key strength of 112 bits.

The TOE's key establishment function has KAS ECC certificate #120.

8.2.3 FCS_CKM.4:

The TOE destroys cryptographic keys in accordance with the specified destruction method based on the memory it is stored on. All keys stored in volatile memory (RAM) are destroyed by a single direct overwrite consisting of zeroes .After overwriting, the TSF reads the memory to verify the key has been destroyed. If the read-verify fails, the process is repeated. For non-volatile keys, the TSF destroys the abstraction of the key to the portion of the flash memory where the key resides using the secure erase command.

Key Material	Origin	Storage Location	Clearing of Key Material
SSH keys	SSH server/ client	Non-volatile	Overwrite with 0 to clear
	application	storage/file system	cache and read verify, then
			call eMMC secure erase
			feature on the file blocks
Authentication keys	X.509 certificates	Non-volatile storage/	Overwrite with 0 to clear
		file system	cache and read verify, then
			call eMMC secure erase
			feature on the file blocks

TLS session keys	syslogtls, radsec	Non-volatile storage/	Overwrite with 0 and read
	applications	RAM	verify

 Table 14: Cryptographic Materials, Storage, and Destruction Methods

8.2.4 FCS_COP.1(1):

The TOE performs encryption and decryption using the AES algorithm in CBC and GCM mode with key sizes of 128 and 256 bits. This algorithm implementation has CAVP AES certificate #4470. The AES algorithm meets ISO 18033-3. Also, CBC meets ISO 10116 and GCM meets ISO 19772.

8.2.5 FCS_COP.1(2):

In accordance with FIPS 186-4, the TOE provides cryptographic digital signature verification using RSA Digital Signature Algorithm (rDSA) and Elliptic Curve Digital Signature Algorithm (ECDSA). The TOE supports rDSA with a key size of 2048 bits. The TOE supports ECDSA with a key size of 256, 384, 521 bits. These implementations have CAVP RSA certificate #2445 and ECDSA certificate #1092.

8.2.6 FCS_COP.1(3):

The TOE provides cryptographic hashing services using SHA-1, SHA-256, SHA-384, and SHA-512 with message digest sizes of 160, 256, 384, and 512 bits respectively, as specified in FIPS PUB 180-4. The TSF uses hashing services the following functions:

- SHA-1, SHA-256, and SHA-512 for SSH data integrity
- SHA-256 for software integrity
- SHA-1, SHA-256, and SHA-384 for TLS
- SHA-512 for password hashing

The SHA algorithm meets ISO/IEC 10118-3:2004 and has CAVP SHS certificate #3682.

8.2.7 FCS_COP.1(4):

The TOE provides keyed-hashing message authentication services using HMAC-SHA-1, HMAC-SHA-256, and HMAC-SHA-512. All key sizes relative to block size are supported by HMAC implementation as specified in FIPS 198-1 and FIPS 180-3, and the following MAC sizes are supported:

- HMAC-SHA-1: 10, 12, 16, 20 bytes.
- HMAC-SHA-256: 16, 24, 32 bytes.
- HMAC-SHA-512: 32, 40, 48, 56, 64 bytes.

The algorithm meets ISO/IEC 9797-2:2011 and has CAVP HMAC certificate #2967.

8.2.8 **FCS_RBG_EXT.1:**

The TOE implements a NIST-approved deterministic random bit generator (DRBG). The DRBG used by the TOE is a NIST Special Publication 800-90 CTR_DRBG with AES. The TOE models uniformly provide two software-based and noise-based entropy sources as described in the proprietary entropy specification. The DRBG is seeded with a minimum of 256 bits of entropy so that it is sufficient to ensure full entropy for 256-bit keys, which are the largest keys generated by the TSF. The TOE's DRBG implementation is validated under CAVP, certificate #1454.

8.2.9 FCS_SSHC_EXT.1/ FCS_SSHS_EXT.1:

The TOE acts as an SSHv2 for remote CLI sessions that complies with RFCs 4251, 4252, 4253, 4254, 5656, 5647, and 6668. There is no SSHv1 implementation on the TOE. The TOE implementation of SSHv2 supports RSA and ECDSA signature verification for authentication in addition to password-based authentication. SSH is used for remote administrators to connect securely to the TOE for CLI connections, transferring audit logs to a remote SFTP server, and for the transmitting updates to the TOE. The SSH implementation will detect all large packets greater than 32,768 bytes and drop accordingly.

The TOE implementation of SSHv2 supports AES-CBC for its encryption algorithm with 128 or 256 bit key sizes. The SSH client differs from the SSH server by its use of key exchange methods. The SSH client implementation only uses ecdh-sha2-nistp256 whereas the SSH server implementation can use any of ecdh-sha2-nistp256, ecdh-sha2-nistp384, or ecdh-sha2-nistp521. Additionally, the TOE's SSH client implementation will authenticate an environmental SSH server using a local database that associates each host name with its public key. This is not applicable to the SSH server. These two differences are the only are the only security-relevant differences between the client and the server implementations.

The TOE's SSH implementation uses ssh-rsa, ecdsa-sha2-nistp256, ecdsa-sha2-nistp384, x509v3-ecdsa-sha2-nistp256, and x509v3-ecdsa-sha2-nistp384 as its public key algorithms. As for data integrity, the TOE supports hmac-sha-1, hmac-sha2-256, and hmac-sha2-512. The SSH connection will be rekeyed after no more than 2^28 packets or more than one hour. The actual rekey data threshold is administratively configurable by a user with the Super role and can be set to 4GB, 2GB, 1GB, or 500MB. The time threshold can be set to an administrator-defined number of minutes and/or seconds.

8.2.10 FCS_TLSC_EXT.2:

The TOE uses TLS to secure communications with the remote syslog server and optional RADIUS server in the Operational Environment. Both TLS 1.1 and 1.2 are supported. Each of these connections supports mutual authentication using valid X.509v3 certificates.

The presented identifier has to match the reference identifier in order to establish the connection. The TSF uses the Common Name (CN) as the Subject Name and either DNS name or IP address as the Subject Alternative Name (SAN). Wildcards are supported for all fields that use them. In the evaluated configuration, the TOE's TLS implementation is configured to present the Supported Elliptic Curves Extension in the Client Hello using NIST curves secp256r1, secp384r1, and secp521r1. Certificate pinning is not supported.

The mandatory ciphersuite of TLS_RSA_WITH_AES_128_CBC_SHA is supported. The following optional ciphersuites are also used if configured by the user with the Super role:

- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

8.3 Identification and Authentication

8.3.1 **FIA_PMG_EXT.1:**

The TOE supports user passwords with a minimum length of 1 and a maximum length of 128 characters. In the evaluated configuration, a minimum of 15 characters should be set. The accepted characters include upper and lower case letters, numbers, and the special characters "!", "@", "#", "\$", "%", "^", "&", "*", "(", and ")".

8.3.2 **FIA_UAU.7:**

While authenticating to the TOE with an incorrect login (specifically an invalid username and/or an invalid password) on any interface the TOE does not indicate to the user whether the username or password was incorrect so the nature of the authentication failure is obfuscated.

8.3.3 FIA_UAU_EXT.2:

Users can authenticate to the TOE using locally defined username/password credentials or using RADIUS. If attempting to authenticate to the TOE using SSH, public key authentication can also be used. A user with the Super role can specify the authentication method(s) allowed for the TOE. The methods of authentication used for the local CLI versus the remote CLI can be configured separately even though they provide identical management functionality.

8.3.4 **FIA_UIA_EXT.1:**

The TOE provides authorized administrators with a local CLI that is accessible via serial port and a remote CLI that is accessible via SSH. These interfaces both support username and password authentication, where the credentials are defined either internally to the TOE or in an environmental RADIUS server. Remote SSH connectivity can also be configured to authenticate administrators using public key.

In the evaluated configuration, the TOE displays a warning banner before authentication regardless of whether the TOE is being accessed locally or remotely. The warning banner text is configurable and display of this banner is the only TOE functionality that is available to an unauthenticated user.

8.3.5 FIA_X509_EXT.1/ FIA_X509_EXT.2/ FIA_X509_EXT.3:

The TOE performs certificate validity checking for TLS mutual authentication with the remote syslog server and RADIUS server. Depending on configuration, the TOE may also perform certificate validity checking when establishing SSH communications. In addition to the validity checking that is performed by the TOE, the TSF will validate certificate revocation status using an OCSP server in the Operational Environment. In the event that the revocation status cannot be verified, the certificate will be rejected.

The TSF determines the validity of certificates by ensuring that the certificate and the certificate path are valid in accordance with RFC 5280. In addition, the certificate path is terminated in a trusted CA

certificate, the basicConstraints extension is present, and the CA flag is set to TRUE for all CA certificates. Finally, the TOE ensures the extendedKeyUsage field includes the code signing purpose (id-kp 3 with OID 1.3.6.1.5.5.7.3.3) for certificates used for trusted updates and executable code, the Server Authentication purpose (id-kp 1 with OID 1.3.6.1.5.5.7.3.1) for server certificates used in TLS, the Client Authentication purpose (id-kp 2 with OID 1.3.6.1.5.5.7.3.2), or the OCSP Signing purpose (id-kp 9 with OID 1.3.6.1.5.5.7.3.9) for OCSP certificates used for OCSP.

The TOE uses X.509v3 certificates to support authentication for TLS connections in accordance with RFC 5280. Client-side certificates are used for TLS mutual authentication. A Certificate Request Message can be generated as specified in RFC 2986 containing the following information "Common Name, Organization, Organizational Unit, Country" and the chain of certificates is validated from the root CA when the CA Certificate Response is received.

8.4 Security Management

8.4.1 **FMT_MOF.1(1)/Audit:**

Auditable events generated by the TSF are transferred to the Operational Environment in two ways. Syslog data is transferred in real-time to a remote syslog server using TLS. Data in the persistent file logs (security, event, and command logs) are transferred to a remote SFTP server using SSH. A user with the Super role is responsible for configuring the locations to which audit data is transmitted over these interfaces, and in the case of the SSH interface, the frequency of transmission.

8.4.2 **FMT_MOF.1(1)/TrustedUpdate:**

Once software updates have been acquired from Ciena and placed onto an SFTP server, a user with the Admin or Super role has the ability to download the updates from the SFTP server onto the TOE.

8.4.3 **FMT_MTD.1**:

The TOE has three roles: Super, Admin, and Limited. A user with a Limited role is a read-only user without any configuration privileges of their own. A user with the Super role functions as a super user for the entire TOE and can manage all aspects of the TSF. A user with the Admin role can perform most of the same security functions authorized to the Super role. However, the Admin role is not privileged to modify audit configurations, delete audit data, configure cryptographic keys, or manage user accounts.

The only security-relevant TOE functionality that is available to a user prior to authentication is the display of the warning banner.

8.4.4 **FMT_MTD.1/AdminAct:**

The ability to modify, delete, and generate/import cryptographic keys and importing SSH keys is limited to a user with the Super or Admin role.

8.4.5 **FMT_SMF.1**:

The TOE defines three administrative roles each of which have differing levels of permission to perform TSF management functions and interact with TSF data. A user functions as the Security Administrator for all management activities that are authorized by their assigned role. The management functions provided

by the TOE include the ability to configure the access banner and session lockout functionality, the ability to acquire, verify, and install TOE software/firmware updates, the ability to configure audit behavior, and the ability to configure cryptographic functionality. All administration is performed using the CLI which can be used either locally via serial console or remotely via SSH.

8.4.6 **FMT_SMR.2:**

The TOE maintains three administrative roles: Limited, Admin, and Super. All three roles have the capability to manage the TSF locally or remotely to varying degrees. Therefore, each role functions as a Security Administrator for different subsets of the TSF, with the Super role providing the ability to manage the entire TSF. All roles can be accessed both locally and remotely using the CLI.

8.5 Protection of the TSF

8.5.1 **FPT_APW_EXT.1:**

Administrator passwords are not stored by the TOE in plaintext. All administrative passwords themselves are hashed using SHA-512. There is no function provided by the TOE to display a password value in plaintext nor is the password data recoverable. When creating a new user, the password value can either be entered in plaintext or the 'secret' parameter can be used in which case a pre-encrypted password string is provided. The password data is encrypted using RSA. This is used for cases where duplicate configuration of multiple systems is desired without exposing vulnerable password hashes in plaintext configuration files.

8.5.2 **FPT_SKP_EXT.1:**

The TOE does not have a mechanism to view pre-shared keys, symmetric keys and private keys. Volatile memory used to store secret keys, private keys, and secret key data is not accessible by administrators and neither is the file system of the OS. A user with the Admin role or higher is permitted to view public key data only.

8.5.3 **FPT_STM.1**:

The TOE is able to provide its own time via its internal clock through manual administrator configuration. The TOE uses the clock for several security-relevant purposes, including:

- Audit records
- X.509 certificate validation
- Inactivity of administrator sessions
- Determining RADIUS timeout

8.5.4 **FPT_TST_EXT.1:**

Upon the startup of the TOE, multiple Power-On Self Tests (POSTs) are run. The POSTs provide environmental monitoring of the TOE's components, in which early warnings can prevent whole component failure. The following self-tests are performed:

• Software integrity: hashed and validated against a known SHA-256 value which resides in local storage that can only be modified when a software update is performed.

- Cryptographic integrity: the cryptographic algorithm implementation is run through known answer tests to ensure they are operating properly.
- Hardware integrity: the field-programmable gate arrays (FPGAs) and data plane hardware are tested for correct operation.

In the event that a self-test fails, the TOE will automatically reboot. If the TSF has been corrupted or the hardware has failed such that rebooting will not resolve the issue, a user with Super role will need to factory reset the TOE and/or have it replaced by authorized personnel in accordance with the OE.PHYSICAL and OE.TRUSTED_ADMIN objectives. These tests are sufficient to validate the correct operation of the TSF because they verify that the SAOS software has not been tampered with and that the underlying hardware does not have any anomalies that would cause the software to be executed in an unpredictable or inconsistent manner.

8.5.5 **FPT_TUD_EXT.1:**

The TOE provides the ability for an authorized administrator to view the current software/firmware version of the TOE and to initiate software/firmware updates. The TOE has an SFTP client that is used to retrieve software updates from an SFTP server. This can be a server maintained by Ciena or one maintained by the organization operating the TOE, in which case updates are shipped to the customer on read-only physical media when made available by Ciena. In the evaluated configuration, the TOE is configured by a user with the Admin or Super role to accept signed updates. Updates provided by Ciena are signed using a 2048-bit RSA digital signature. Prior to installation of the software image, the digital signature is checked to ensure it is valid. If the digital signature is deemed invalid, the update process stops and the invalid software image will be deleted from the TOE's storage. This process does not require administrative action and there is no administrative override capability. When an update is installed, the previously-installed version continues to run until the TOE is rebooted. The TOE provides the ability to query both the running and installed versions of the TOE software/firmware.

8.6 TOE Access

8.6.1 **FTA_SSL_EXT.1:**

The TSF has the ability to terminate inactive local sessions. An authorized administrator with the Admin or Super role can configure maximum inactivity times for both local and remote administrative sessions using the "system shell set global-inactivity-timeout" command. When a session is inactive for the configured period of time the TOE will terminate the session, requiring the administrator to log in again to establish a new session when needed. The default value for the inactivity timer is 10 minutes, but it can be set to as little as 1 minute.

8.6.2 FTA_SSL.3:

The TOE will terminate a remote session due to inactivity according to the configuration set by the Security Administrator, which in this case is a user with the Admin or Super role. This is a global command and will impact all users and interfaces (console and remote CLI). The system timeout is 10 minutes by default, but can be configured from 1-1500 minutes.

This configuration is able to be set by a user with an Admin or Super role using the command:

system shell set global-inactivity-timer on - This enables the timer system shell set global-inactivity-timeout <minutes>

8.6.3 FTA_SSL.4:

Any user accessing the TOE is capable of terminating their own session by entering the exit command. If in a tiered command, the user will need to type "quit" to leave the tier structure entirely before typing "exit" to terminate their session. Otherwise, typing "exit" in a tiered command will only result in closing the current command tier and going to the previous command tier.

8.6.4 FTA_TAB.1:

There are two possible ways to log in to the TOE: local CLI and remote CLI. When logging in locally or remotely through the CLI, the pre-authentication banner is displayed and can be viewed prior to authentication. There is also a configurable post-authentication banner known as the "Welcome Banner." A user with the Super or Admin role can configure either banner.

8.7 Trusted Path/Channels

8.7.1 **FTP_ITC.1**:

The TOE provides the ability to secure sensitive data in transit to and from the Operational Environment. Updates to the TOE software are securely delivered to the TOE using SFTP. Security, command, and event log files are transmitted to a remote server using SFTP as well. The TOE uses OpenSSH 6.6P1 to support SSH communications. The TOE also uses TLS for syslog server and RADIUS server communications. When there is a network outage or connection is lost, the secure syslog implementation will maintain a small buffer of data temporarily but this data is not preserved in the event of a persistent outage due to the streaming nature of syslog.

Note that in order to enable a FIPS-compliant mode of operation (which restricts the supported cryptographic algorithms to those specified in this Security Target), it is necessary to manually enable FIPS 140-2 encryption mode as part of the initial configuration of the TOE.

8.7.2 FTP_TRP.1:

Remote administration is secured using SSH. The security administrator of the TOE can authenticate using either username/password or SSH public key authentication. The TOE's SSH server implementation is conformant to FCS_SSHS_EXT.1.