
Cosmopolic
2.1 Version 4

JavaCard Open Platform

Security Target

© 2002, Oberthur Card Systems. All rights reserved.

The information contained in this publication is accurate to the best of Oberthur Card
Systems knowledge. However, Oberthur Card Systems disclaims any liability resulting from
the use of this information and reserves the right to make changes without notice.

Manual reference: 057681-03-UDD-AA

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T i

CONTENTS

ABOUT THIS GUIDE .. III
Presentation of the Guide ...iii
Structure of the Guide... v

CHAPTER 1 – SECURITY TARGET OVERVIEW...1
Identification..1
Overview ...1
Common Criteria Conformance ..2

CHAPTER 2 – TOE DESCRIPTION..3
Chapter Overview ...3
TOE Overview...3
TOE Life Cycle..6
TOE Environment ...11
TOE Limits ..12

CHAPTER 3 – TOE SECURITY ENVIRONMENT..13
Chapter Overview ...13
Roles, Users and Subjects ...13
Assets to be Protected..14
Assumptions ...16
Threats..17
Organisational Security Policies ...19

CHAPTER 4 – SECURITY OBJECTIVES ...21
Chapter Overview ...21
TOE Security Objectives...21
Environment-Related Security Objectives ..24

CHAPTER 5 – IT SECURITY REQUIREMENTS ..27
Chapter Overview ...27
TOE Security Functional Requirements ...27
TOE Security Assurance Requirements ...49
IT Environment Security Requirements ..51

CHAPTER 6 – TOE SUMMARY SPECIFICATION...53
Chapter Overview ...53
TOE Security Functions ..53
Assurance Measures ..58

GLOSSARY...61

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T iii

ABOUT THIS GUIDE

Presentation of the Guide

Purpose
The guide describes the Security Target for the Cosmopolic 2.1 V4 card, running on a
Javacard 2.1.1 virtual machine. It defines the:

• Security enforcing functions of the Target Of Evaluation
• Environment in which it operates

Audience
This guide should be read by all people wishing to understand security implemented in the
Cosmopolic Platform.

A b o u t t h i s G u i d e

O B E R T H U R C A R D S Y S T E M Siv

Related Documents
The following related documents are available.

Title Date, Reference, Version, Issuer

Common Criteria for information Technology
Security Evaluation, Part 1: Introduction and
General Model

August 1999, version 2.1, CCIMB-99-031

Common Criteria for information Technology
Security Evaluation, Part 2: Security Functional
Requirements

August 1999, version 2.1, CCIMB-99-032

Common Criteria for information Technology
Security Evaluation, Part 3: Security Assurance
Requirements

August 1999, version 2.1, CCIMB-99-033

Protection Profile – Smart Card Integrated Circuit
with Embedded Software

Version 2.0, June 1999 issue, registered at the
French Certification Body under the number
PP/9911

Java Card 2.1.1 – Application Programming
Interfaces

May 18, 2000, Sun Microsystems

Java Card 2.1.1 – JCRE May 18, 2000, Sun Microsystems

Java Card 2.1.1 – Virtual Machine Specifications May 18, 2000, Sun Microsystems

Visa Open Platform Card Implementation
Specification

March 8, 1999, Visa International
(new specifications 04/10/00)

Identification cards – Integrated circuit(s) cards
with contacts, Part 6: Inter industry data
elements

ISO / IEC 7816-6 (1996)

Digital Signatures using Reversible Public Key
Cryptography for the Financial Services Industry
(rDSA)

ANSI X9.31-1998, American Bankers
Association

FIPS PUB 46-3, Data Encryption Standard October 25, 1999 (ANSI X3.92), National
Institute of Standards and Technology

FIPS PUB 81, DES Modes of Operation April 17, 1995, National Institute of Standards
and Technology

FIPS PUB 184-2 April 17, 1995, National Institute of Standards
and Technology

Information Processing Modes of Operation for a
64-Bit Block Cipher Algorithm

ISO 8372 (1987), International Organisation for
Standardisation

Banking – Key Management ISO 8732 (1988), International Organisation for
Standardisation

Public Key Cryptography using RSA for the
Financial Services Industry

ISO / IEC 9796-1, Annex A, Section A.4 and
A.5 and Annex C (1995)

Information technology – Security techniques:
Data integrity mechanism using a cryptographic
check function employing a block cipher
algorithm

ISO 9797 (1994) , International Organisation
for Standardisation

FIPS PUB 140-1, Security requirements for
cryptographic modules

January 11, 1994, National Institute of
Standards and Technology

PKCS#1 The public key cryptography standards RSA Data Security Inc., 1993

Smart Card Security User Group – Smart Card
Protection Profile (SCSUG-SCPP)

Version 3.0, September 9, 2001

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T v

Structure of the Guide

Introduction
This guide contains:

• Six chapters
• A glossary

Chapters
The chapters in this guide cover the following main topics.

Chapter Main Topics

Chapter 1 – Security Target Overview • Identification

Chapter 2 – TOE Description • TOE Overview

• TOE Life Cycle

• TOE Environment

• TOE Limits

Chapter 3 – TOE Security Environment • Roles, Users and Subjects

• Assets to be Protected

• Assumptions

• Threats

• Organisational Security Policies

Chapter 4 – Security Objectives • TOE Security Objectives

• Environment-Related Security Objectives

Chapter 5 – IT Security Requirements • TOE Security Functional Requirements

• TOE Security Assurance Requirements

• IT Environment Security Requirements

Chapter 6 – TOE Summary Specification • TOE Security Functions

• Assurance Measures

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 1

CHAPTER 1 –
SECURITY TARGET OVERVIEW

Identification
The security target Lite and Complete Security Target are identified as follows.

Item Identification

Title COSMOPOLIC2.1 V4

Java Card Open Platform

Security Target

OCS registration 057681-03-UDD-AA

Name for Complete
ST

JPH33V4 ST

OCS registration for
Complete ST

FQR 110 1254

Version for Complete
ST

1.0, issue 4

Component P8WE5033 (Philips)

Overview
This Security Target covers the development of Cosmopolic 2.1 V4, which receives and
manages different types of applications:

• Debit/Credit
• Wallet
• Fidelity
• Pay TV

This card is consistent with the Java Card 2.1.1 and Visa Open Platform 2.0.1 specifications.

The objectives of the Security Target are to describe and specify the:

• Target of Evaluation (TOE), its life cycle, positioning it in the smart card life cycle
• Security environment of the TOE, including the assets to be protected and the threats to be

countered by the TOE and by the operational environment during the development and
platform active phases

• Security objectives of the TOE and its supporting environment in terms of TOE sensitive
information integrity and confidentiality; it includes protection of the TOE and associated
documentation during the development and active phases

• Security requirements including TOE functional requirements, TOE assurance
requirements and security requirements for the environment

• Summary of the TOE specification, including a description of the security functions and
assurance measures that meet the TOE security requirements

C h a p t e r 1 – S e c u r i t y T a r g e t O v e r v i e w

O B E R T H U R C A R D S Y S T E M S2

Common Criteria Conformance
The Security Target is in accordance with the Common Criteria, Part 2 conformant and Part 3
augmented.

The assurance level is EAL4 augmented by AVA_VLA.4, ALC_DVS.2 and ADV_IMP.2.

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 3

CHAPTER 2 – TOE DESCRIPTION

Chapter Overview
This chapter describes the TOE to help understand its security requirements. It addresses the
product type, the intended usage and the main TOE features and includes:

• TOE overview
• TOE life cycle
• TOE environment
• TOE limits

TOE Overview
The TOE in this ST consists of a VOP Platform called Cosmopolic 2.1 V4 and hosted on the
smart card IC.

The platform is based on the:

• Java Card 2.1.1 Specifications
• Open Platform 2.0.1 Card Specifications
• Visa Open Platform Card Implementation Specifications

The smart card supporting the TOE is composed of hardware and software components, as
illustrated below.

APPLETS

Resident
Application Virtual

Machine API

OP

BIOS

INTEGRATED CIRCUIT

P
L
A
T
F
O
R
M

VOP

Card
Manufacturer

Card
Issuer

C h a p t e r 2 – T O E D e s c r i p t i o n

O B E R T H U R C A R D S Y S T E M S4

The TOE, called VOP Platform, includes the following components:

• BIOS
• Virtual machine
• APIs
• Open platform application
• Resident application

Each of these components is described in the following paragraphs.

BIOS
The BIOS is an interface between the hardware and native components, such as the VM,
APIs. It implements the following features:

• APDU management (T=0, T=1 protocols)
• Timer management
• Exception management
• Transaction management
• EEPROM access
• Cryptographic modules; the Cosmopolic V4 smart card contains a 2048-bit RSA key

generator and also implements the DES, RSA and SHA-1 cryptographic algorithms

Virtual Machine
The JAVACARD 2.1.1-compliant virtual machine:

• Interprets the JAVACARD applet byte code
• Supports logical channels, allowing one applet to be selected on one channel and another

to be selected on another
• Supports the execution of applets loaded in the ROM
• Is activated when an applet is selected

APIs
The JAVACARD 2.1.1-compliant APIs support:

• Key generation
• Message signature and ciphering
• A proprietary API OCSystem
• A proprietary API FileSystem

Open Platform Application
The Open Platform OP2.0 configuration 1b application:

• Consists of the Card Manager, the API OPsystem and security domains
• Is implemented in Java and its byte-code is stored in ROM
• Is activated when the Card Manager is selected by the Card Issuer

The API Opsystem can be called at any time by the applets.

T O E O v e r v i e w

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 5

Resident Application
The resident application comprises a native code application with a basic main dispatcher to:

• Receive the card commands
• Dispatch them to the application and module functions for execution

It also handles:

• Card manufacturer authentication
• Logical channel management

The dispatcher is always activated. Some card administration commands are only available
during the prepersonalisation phase.

C h a p t e r 2 – T O E D e s c r i p t i o n

O B E R T H U R C A R D S Y S T E M S6

TOE Life Cycle
The following illustration presents the VOP life cycle.

VOP STEPS

BIOS: Initialised
EEPROM

Resident application:
PrePerso

Resident application:
USE

CM: Perso VOP

CM: OP_READY

LOAD FILE:
LOADED

Applet:
INSTALLED

APPLET STEPSBIOS: Empty EEPROM

CM: INITIALISED

CM: SECURED

CM: CM_LOCKED

CM: TERMINATED

LOAD FILE:
LOGICALLY DELETED

Applet:
LOCKED

Applet:
SELECTABLE

Applet: PERSONALISED/
BLOCKED

Applet:
LOGICALLY DELETED

Phase 5

Phase 6

Phase 7

Resident application:
BLOCKED

O
n
l
y

 f
o
r

a
p
p
l
e
t

I
n

R
O
M

CM: SECURED

CM: SECURED

Step transition

Component transition

Legend

T O E L i f e C y c l e

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 7

The VOP platform life cycle is part of the smart card product life cycle, which is divided into
seven phases, in compliance with the Smart Card Integrated Circuit Protection Profile
(PP/9806); see the following illustration.

The open platform specified by Visa International defines life cycle state models to control
the functionality and security of the following components: Card Manager, Global PIN, Card
Registry, Key Sets, Load Files, and Applets.

Phase 1

Smartcard embedded
software

IC prepersonalisation
requirements

Prepersonalisation data IC sensitive information,
software, tools

Phase 2

Phase 5

Phase 6

Phase 3

IC prepersonalisation
requirements

IC design IC dedicated software

Smartcard IC database
construction

IC photomask fabrication

IC manufacturing

IC testing and
prepersonalisation

IC packaging

Smartcard product
finishing process

Testing

Personalisation

Testing

Smartcard product
end-use

End of life process

Testing

Phase 7

Phase 4

P
R
O
D
U
C
T

C
O
N
S
T
R
U
C
T
I
O
N

P
R
O
D
U
C
T

U
S
A
G
E

P
r
o
d
u
c
t
i
o
n

D
e
v
e
l
o
p
m
e
n
t

U
s
e

p
h
a
s
e

p
h
a
s
e

p
h
a
s
e

C h a p t e r 2 – T O E D e s c r i p t i o n

O B E R T H U R C A R D S Y S T E M S8

Card Life Cycle Transitions
The Card Manager maintains the overall security and administration of the card and its
contents. Given that the Card Manager plays this supervisory role for the entire card, its life
cycle can be considered to be the card’s life cycle. The card’s life cycle from an Open
Platform perspective is only significant at the beginning of the Card Manager life cycle.

The Card Manager:

• Owns and maintains the card life cycle state information
• Manages the requested state transitions in response to APDU commands

The end of the Card Manager life cycle is considered to be equivalent to the end of the card’s
life cycle.

State Description

VOP Personalisation
(phase 5)

This life state is the initial state of the Card Manager applet, immediately
after it has been installed.

In this life state, the initialisation key and card and chip CPLC must be
loaded before switching to the OP_READY life state.

OP_READY
(phase 5)

In the OP_READY card life cycle state, all the basic features of the runtime
environment are available and the Card Manager is ready to receive,
execute and respond to APDU commands.

The card is assumed to have the following characteristics in the
OP_READY state.

• The runtime environment is ready for execution.

• An initialisation key is available within the Card Manager.

INITIALISED
(phase 5)

The INITIALISED card life cycle state is an administrative card production
state. Most Card Manager personalisation tasks have been carried out
when entering this state.

SECURED The SECURED card life cycle state is the normal operating state of the
card during issuance. This state is the indicator for the Card Manager to
enforce the Card Issuer’s security policies related to post-issuance card
behaviour, such as applet loading and activation.

The card is assumed to have the following characteristics in the SECURED
state.

• The Card Manager contains all necessary key sets and security
elements for full functionality.

• Card Issuer initiated card content can be changed through the Card
Manager.

• Post-issuance personalisation of applets belonging to the Card Issuer
can be carried out via the Card Manager.

CM_LOCKED The CM_LOCKED state is used to tell the Card Manager to temporarily
disable all applets on the card, except for the Card Manager. This state is
created to give the Card Issuer the ability to temporarily disable
functionality of the card on detection of security threats (either internal or
external to the card).

Setting the Card Manager to this state means that the card will no longer
work, except via the Card Manager, which is controlled by the Card Issuer.

TERMINATED The Card Manager is set to the TERMINATED life cycle state to
permanently disable all card functionalities, including the Card Manager
itself. This state is created as a mechanism for the Card Issuer to logically
destroy the card for such reasons as the detection of a severe security
threat or card expiration.

The TERMINATED state is irreversible and signals the end of the card’s life
cycle.

T O E L i f e C y c l e

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 9

BIOS Life Cycle
The BIOS life cycle is divided into two phases.

Phase Description

Empty EEPROM When the chip is delivered by the IC manufacturer, the EEPROM is empty,
except for the Manufacturer Transport Key (MSK).

Initialised EEPROM On the first power-on, the BIOS initialises its data:

• ATR files

• Default applet reference

• FAT

Resident Application Life Cycle
The resident application life cycle is divided into three phases.

Phase Description

Prepersonalisation
state (PP)

The resident application command set (EXTERNAL_AUTHENTICATE,
GET_CHALLENGE, GET_DATA, INSTALL, LOAD_APPLET,
LOAD_STRUCTURE, MANAGE_CHANNEL) is active.

Use The resident application command set (SELECT, MANAGE_CHANNEL,
and GET_DATA only if no applet is selected) is active.

Locked/Blocked All the resident application commands are inactive.

Load File Life Cycle
The load file life cycle is divided into two phases.

Phase Description

LOADED The Card Manager considers that all load files present in the card and
available for use either from immutable persistent memory or mutable
persistent memory are in the LOADED state.

LOGICALLY_
DELETED

If the Card Manager receives a request to delete a load file that cannot be
physically deleted (it is stored in the immutable persistent memory for
example), the load file is logically deleted by setting its state to
LOGICALLY_DELETED.

Once a load file has been set to the LOGICALLY_DELETED state, it cannot
be reversed. The Card Manager considers the LOGICALLY_DELETED state
to be equivalent to the physical deletion of the load file.

C h a p t e r 2 – T O E D e s c r i p t i o n

O B E R T H U R C A R D S Y S T E M S10

Applet Life Cycle
The delivery of an applet must satisfy a process, using a compiler, converter, verifier and
loader. This process is illustrated below.

The applet life cycle begins when an applet is installed in the card. This installation may
occur:

• Directly during a loading transaction
• From a load file on the card

The Card Manager is responsible for managing the initial life cycle state transition of an
applet before it is fully functional; once an applet is available for selection from the outside
world, it takes control of managing its own life cycle.

The life cycle states related to applet management are used to inform the Card Manager of the
applet status. This state information must be provided, as the state definitions are:

• Applet-dependent
• Only known to the applet

The Card Manager can then take control of the life cycle again later in the applet life if:

• A security problem is detected by the card or the applet-related Card Issuer
• The applet is to be deleted either physically or logically

The Card Manager:

• Sets the applet life cycle to its initial INSTALLED state during applet installation
• Makes the applet available for selection by setting its life cycle to SELECTABLE

The applet manages life cycle transitions from SELECTABLE to PERSONALISED and
optionally to BLOCKED. Applets can be loaded, installed and personalised during phases 5,
6 and 7.

At any point in the applet life cycle, the Card Manager can take control again for security
reasons by setting the applet life cycle state to LOCKED. Also, if the applet is to be removed
from the card, the Card Manager manages that process and sets the appropriate resultant life
cycle state if applicable.

App.java
Java source code

App.class

Compiler

App.cap
App.exp

Converter

App.cap
+ DAPs

Verifier
Load File

Loader

Loader

Oberthur

T O E E n v i r o n m e n t

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 11

The applet life cycle is divided into six phases.

Phase Description

INSTALLED The INSTALLED state in the open platform context means that:

• The applet executable has been properly linked

• Any necessary memory allocation has taken place

• The applet can be executed

The install process specifically does not include establishing the applet as
an externally visible applet (SELECTABLE). Moreover, the Install process
is not intended to incorporate applet personalisation, which may occur as a
separate step.

SELECTABLE The SELECTABLE state is used to make an applet available to receive
APDUs from outside the card. Applets must be properly installed and
functional before they can be set to the SELECTABLE state.

PERSONALISED The prerequisites for an applet to move to this state are applet-dependent
but the state indicates that the applet has been set up with all necessary
personalisation data and keys for full runtime functionality.

The applet behaviour while in this state is determined by the applet itself.
The Card Manager is not involved.

BLOCKED The prerequisites for an applet to move to this state are applet-dependent
but the state indicates that an applet-specific security problem has been
detected either from within the applet or from outside the card.

The applet behaviour while in this state is determined by the applet itself.
The Card Manager is not involved.

LOCKED The LOCKED state is used for security management control by the Card
Manager or Issuer to prevent the selection and therefore execution of an
applet.

If the Card Manager detects a threat from within the card and determines
that the threat is associated with a particular applet, that applet can be
prevented from further selection by setting its state to LOCKED.

Alternatively, the Card Issuer may determine that a particular applet on the
card needs to be locked for a business or security reason and can initiate
the applet life cycle transition via the Card Manager.

Once an applet is set to LOCKED, it can only be made available for
selection once the Card Manager has set it back to the state that it had
achieved immediately prior to being set to the LOCKED state.

LOGICALLY_
DELETED

If the Card Manager receives a request either directly or indirectly from a
security domain to delete an applet, which cannot be physically deleted (it
is stored in immutable persistent memory for example), the applet is
logically deleted by setting its state to LOGICALLY_DELETED.

Once an applet has been set to the LOGICALLY_DELETED state, it cannot
be reversed. The Card Manager considers the LOGICALLY_DELETED
state to be equivalent to the physical deletion of the applet.

TOE Environment
The TOE environment is defined as follows:

• TOE development environment corresponding to phase 1
• Prepersonalisation process environment corresponding to phase 5
• Personalisation environment corresponding to phase 6, personalisation and testing of the

smart card with the user data
• End-user environment corresponding to phase 7

The loading process is included in phases 5, 6 and 7.

C h a p t e r 2 – T O E D e s c r i p t i o n

O B E R T H U R C A R D S Y S T E M S12

TOE Limits

The scope of this present security target is:

• TOE development in the OBERTHUR environment during phase 1
• TOE use during phase 7

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 13

CHAPTER 3 –
TOE SECURITY ENVIRONMENT

Chapter Overview
This chapter describes the:

• Security aspects of the environment in which the TOE is to be used
• Assets to be protected
• Secure usage assumptions
• Threats
• Organisational security policies

Roles, Users and Subjects

Roles
According to the card life cycle, the users concerned by the TOE may have different roles.

Role Description

R.Prepersonaliser Loading of additional data or code

Delivery of the card with the Card Manager in the OP_READY state

R.Personaliser Generation and loading of the Card Manager keys (Card Manufacturer or
Card Issuer)

R.Sign_Load_File Signature of the load file

R.Card_Manager Manage the secure loading, installing and deleting of applet on-card, the
loading of privileges, and manage global card data including Card Manager
and applet life cycle state

R.Use_AP Use APIs available on the platform

R.Applet_privilege Modification of the:

• CM life cycle

• ATR

• Global PIN

Verification of the mandated DAP

C h a p t e r 3 – T O E S e c u r i t y E n v i r o n m e n t

O B E R T H U R C A R D S Y S T E M S14

Users
The following users are concerned by the TOE.

User Description Roles

U.Card_manufacturer Card manufacturer R.Prepersonaliser
R.Personaliser

U.Card_Issuer Administrator of the TOE during its life cycle R.Personaliser
R.Sign_Load_File
R.Card_Manager

U.Applet Applet executed on this VOP platform
implemented in Java

R.Use_API
R.Applet_privilege
R.Personaliser

Subjects
The following subjects are defined.

Subject Description Users

S.Resident
application

Resident application U.Card_manufacturer
U.Card_Issuer

S.Applet Applet executed on this VOP platform
implemented in Java

U.Applet

S.CM Process implementing the VOP specification
and activated by the dispatcher

U.Card_manufacturer
U.Card_Issuer

Assets to be Protected
The TOE sensitive data and code, described in the following paragraphs, must be protected in
terms of:

• Confidentiality

and/or

• Integrity

User Data
The following user data must be protected.

D.BYTECOD Byte code
D.JAVAOBJ Java objects:

D.ARRAY Array

D.LOADFILE Load file
D.APPLIFECYC Applet life cycle state

D.PIN PIN:
D.GLPIN Global PIN
D.OWNPIN Owner PIN (for applets)

D.KEY Cryptographic keys owned by the applets
or Card Manager, used by the DES algorithm

A s s e t s t o b e P r o t e c t e d

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 15

TSF Data
The following TSF data must be protected.

D.NBAUTHENTIC Number of authentications
D.NB_REMAINTRYOWN Number of remaining tries for the owner

PIN
D.NB_REMAINTRYGLB Number of remaining tries for the global

PIN
D.CRYPTOGRAM Indication that cryptograms are used as

input for authentication, resulting from
key and random computation

D.AUDITLOG Audit log file
D.AUDITLOG_SIZE Audit log size
D.FLG_INTEGRITY Integrity flag

ASG.CARDREG Card registry:
AS.APID Applet identifier (AID)
AS.CMID Card Manager ID (AID)

ASG.APPPRIV Applet privileges group:
Card Manager lock privilege
Card terminate privilege
Default selected privilege
PIN change privilege
Security domain privilege
Security domain with DAP verification
privilege
Security domain with mandated DAP
verification privilege

AS.CURCONTEXT Current context
AS.AUTH_MSK_STATUS Authentication MSK status
AS.AUTH_CM_STATUS Authentication CM status
AS.CMLIFECYC Card life cycle state
AS.CMCONTEXT Card Manager’s context
AS.EEPROM_FLAG EEPROM integrity flag
AS.KEYSET_VERSION Keyset version
AS.KEYSET_VALUE Keyset value
AS.SESSION_KEY Session key
AS.LOGIC_CHANNEL_NB Logical channel number (1-4)
AS.MAC Chained MAC of commands for a secure

channel
AS.SECUR_CHANNEL_NUM Secure channel number
AS.MSKEY Transport key (Manufacturer Secret Key)
AS.SECURITY_LEVEL Secure channel security levels:

Confidentiality
Integrity
Both

AS.DAP Data Authentication Pattern:
load file signature

AS.SENRST Sensor reset indicator
Check Objects Check objects (integrity)
Check Code Check code (integrity)
Check ROM Check ROM (integrity)
Check FAT Check FAT (integrity)
Quotas EEPROM Quotas EEPROM

C h a p t e r 3 – T O E S e c u r i t y E n v i r o n m e n t

O B E R T H U R C A R D S Y S T E M S16

Development Data
The following assets must be protected during the development phase:

• VOP Platform specifications
• VOP Platform implementation
• VOP Platform related documentation

Assumptions
Security systematically concerns the whole system: the weakest element of the chain
determines the total system security. Secure usage assumptions must be considered for a
secure system using smart card products. These assumptions are made at various levels:

• Tools
• Phases 2, 3 and 4
• Phase 7

Level Assumption Description

Tools A.APPLET_TOOLS Applet tools and processes, as defined by the Card Issuer’s
policy, are used to develop applets. More precisely, the
development chain of the applets includes a:

• Converter

• Verifier (all phases)

The converter:

• Generates verifiable Java Card bytecode, in a well-
formed CAP file, which encapsulates the information in
Java class files that comprise exactly one Java package

• Checks the limits imposed by the JC21 specification on
the number of classes, methods and fields

• Generates well-formed export files, the conversion
process preserving the code semantics of the applet’s
Java code (all phases)

The verifier ensures that the CAP file has the correct format.
The bytecodes are verified using a simple theorem prover,
which establishes a set of structure constraints on the
bytecodes.

A.USE_PROD To maintain confidentiality and integrity of the TOE and
prevent any possible copy, modification, retention, theft or
unauthorised use, it is assumed that security procedures are
used during the:

• IC development phase

• IC production phase

• IC packaging and tests operations through phases 2, 3
and 4

Phases
2, 3
and 4

A.KEY_MGT The imported cryptographic key (MSK) is assumed to be
generated, maintained and used off-card in a secure manner.
This is a particular requirement on off-card systems and
includes the provision of suitable physical, personnel and
procedural measures as well as technical measures.

Phase 7 A.SECURE_LOAD It is assumed that secure communication protocols and
procedures are used between the Manufacturer and the
applet developer or Card Issuer.

T h r e a t s

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 17

Threats
This section describes all threats to the assets, against which specific protection within the
TOE or its environment is required. All possible threats that may be encountered are listed.
The attackers involved in these threats are also described.

Attackers
Some TOE attackers are acting on behalf of a user, using hardware or software methods. This
software can be located for example on the terminal using the platform (outside the TOE).

For this evaluation (EAL4), these attackers are considered to have a high-level attack
potential.

They may also use software (an applet for example), loaded and residing in the smart card
memory (also outside the TOE), and attempting to access sensitive data.

These attacks can only be carried out by applet developers with sufficient knowledge to
implement an applet passing the Java Card verifier and bypassing the firewall.

TOE Development Phase
The following threat may be present during the TOE development phase.

Threat Description

T-1.INFO_DVPT Unauthorised modification, disclosure during the specification,
development and validation phases of the:

• TOE specification

• TOE design

• TOE implementation

• Tools used for TOE testing and development

• TOE tests results

• IC specifications delivered by the manufacturer

Unauthorised modification, disclosure during TOE storage and TOE
delivery.

TOE Active Phases
The following threat may be present during the TOE active phases.

Threat Description

T0.MOD_MEM Unauthorised modification of information in ROM and EEPROM. A
manipulation or failure of the TOE may modify:

• User data

• TSF data

• OS code

T2.MOD_INITKEY Modification and disclosure of the initialisation key to be loaded.

T3.DISCLOS_
MSKEY

Disclosure of the transport key.

C h a p t e r 3 – T O E S e c u r i t y E n v i r o n m e n t

O B E R T H U R C A R D S Y S T E M S18

Threat Description

T4.MOD_PIN_KEYS Modification or disclosure of the:

• Global PIN

• Owner PIN

• Keysets

• Keys

T5.LOAD_APP Unauthorised loading and installation of applets or load files. The load file
stored in ROM may be made available in an unauthorised way.

T6.DISCLOS_CODE Applet code disclosure during loading.

T7.EXEC_
EXTCODE

Unauthorised execution of the bytecode.

T8.MOD_BYTE Unauthorised modification of the bytecode (applet, load file).

T9.MOD_
LIFECYCLE

Unauthorised modification of the life cycle of:

• CM

• Load file

• Resident application

• Applet

T11.DEL_APP Unauthorised deletion of the load file or applet.

T13.SELECT_APP Unauthorised selection of an applet: some applet life cycle states forbid the
selection of the applet, some Card Manager life cycle states forbid the
selection of all applets.

T15.MOD_AID Unauthorised modification of the AID of the CM or an applet.

T16.PERSO_APP Unauthorised applet personalisation using the Card Manager
ProviderSecurityDomain service (modification of keys, Java objects, PINs,
applet life cycle).

T17.ASSOC_
SDAPP

Unauthorised association between the security domain and the applet.

T18.MOD_PRIV Modification, disclosure of privileges.

T21.USE_IDENT Identity usurpation by an applet, to access a shareable Java object.

T23.ACCES_DATA Unauthorised accesses when another entity, such as an applet or human
user, is reading or writing the data of one applet (PINs, keys, data tables
and objects).

T24.DISCLOS_KEY Disclosure of the generated key in the card.

T25.PERSO_RESID Unauthorised Prepersonalisation of the resident application (modification of
EEPROM contents).

T29.MOD_DATAVM Unauthorised modification of the VM data and code.

T30.MOD_ATR Unauthorised modification of the ATR files (stored in EEPROM).

T32.RESOURCES Total or partial hoarding by a malicious applet of card resources delivered
by the platform.

O r g a n i s a t i o n a l S e c u r i t y P o l i c i e s

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 19

Organisational Security Policies
The TOE must comply with the following organisational policy statements.

Policy Description

P.JC_
FRAMEWORK

The TOE must support the core APIs of the Javacard specifications.

P.SERVICES The VOP platform must provide services (cryptographic or others) to allow
applets to implement security mechanisms.

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 21

CHAPTER 4 – SECURITY OBJECTIVES

Chapter Overview
The security objectives cover the following main aspects:

• Integrity and confidentiality of assets
• Protection of the TOE during its active life via active security functions
• Protection of the TOE development environment and delivery process

TOE Security Objectives
The following security objectives are defined at TOE level.

Objective Description

O.DETECT_MEM The platform must:

• Detect loss of integrity in the global EEPROM and user’s security
information and attributes

• Ensure the consistency of all TSF data

O.INT_ROM The platform must ensure the integrity of all code stored in ROM.

These objectives are divided into four groups:

• Card Manager objectives
• Applet management objectives
• Resident application objectives
• BIOS objectives

Card Manager Objectives
The following security objectives are defined at Card Manager level.

Objective Description

O.AUTHE_PERS The personaliser must be authenticated before executing the commands
installing the Card Manager. Loading and installation of applets, including
those stored in ROM, require successful authentication during the
prepersonalisation phase.

O.INITKEY The TOE must check if the initialisation key is ciphered and signed with the
transport key.

O.SENS_DATA The integrity of stored sensitive data must be ensured (audit log file,
keyset, global PIN and so on).

O.CRYPT_DATA The TOE must check that the global PIN and keyset are loaded ciphered
and signed. The Global PIN or keyset are loaded or deleted after
successful authentication in all phases.

O.AUTHE_LOAD An applet or load file is loaded, installed or erased through the Card
Manager after successful authentication in all phases.

C h a p t e r 4 – S e c u r i t y O b j e c t i v e s

O B E R T H U R C A R D S Y S T E M S22

Objective Description

O.SIGN_COD The TOE must check that all applets loaded have been signed. Otherwise,
cryptographic algorithms are not available or restricted.

O.PROTEC_COD During the loading of bytecode on the card provided by an application
provider and signed by the card issuer, the TOE guarantees its protection
in terms of confidentiality and integrity.

O.AUTHE_CMS_OP The VOP platform can be used by a Card Management System while
controlling that the following management operations are only performed
by the Card Issuer.

• The life cycle state can be changed only after a successful
authentication.

• The most significant errors are notified and recorded in an audit log
file and the Card Issuer can read all recorded errors.

• The Card Issuer can request the VOP platform in order to inform it of
the applets and load files present on the card and their life cycle
states.

O.MGT_CYC Applet and Card Manager life cycle states must be always valid and those
states must condition the execution of the applets. Some life cycle
evolutions are forbidden.

O.AUTHE_AID An applet or Card Manager AID can only be changed by the Card Manager
after successful authentication of the Card Issuer.

Applet Management Objectives
The following security objectives are defined at applet management level.

Objective Description

O.PERSO_APP An applet can only be personalised by the applet itself:

• Using its resources

• With delegation to the Card Manager or its security domain

O.PROT_PRIV Applets privileges are protected in terms of integrity. These privileges are:

• Applet-security domain association

• Default applet

• Right to change the CM state to CM_LOCKED

O.AUTHE_PRIV Some applet privileges can be modified by the Card Issuer (via the Card
Manager) after successful authentication.

O.AUTHE_CMS_
APP

An applet can only change states after a successful Card Issuer
authentication.

O.INTEG_USER The TOE ensures integrity of users, Java objects and user packages.

O.CONF_
SENSDATA

The TOE ensures confidentiality of sensitive data: PIN, keys and so on.

O.FIREWALL There is a firewall between applets. Furthermore, the applets cannot
modify TOE data and code.

T O E S e c u r i t y O b j e c t i v e s

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 23

Objective Description

O.CRYPT_APP The TOE provides a set of security features by using the Application
Programming Interface for:

• Cryptographic operations (DES, RSA); these operations must check
the integrity and confidentiality of the keys

• Generation of secure RSA key

• True random generation

• Access control PIN management (creation, update, verification,
deletion)

• Protection against power loss and tearing through transaction
mechanism

O.RESOURCES The TOE must provide the means of controlling the use of resources by its
users and subjects so as to prevent permanent unauthorised denial of
service.

Example: It must prevent a loaded application from taking control of the
whole persistent memory (EEPROM), thus prohibiting other
loaded applications from using it.

Resident Application Objectives
The following security objectives are defined at resident application level.

Objective Description

O.AUTHE_PERS The personaliser must be authenticated prior to executing the commands
installing the Card Manager. The loading and installation of applets,
including those stored in ROM, require successful authentication during the
prepersonalisation phase.

O.AUTHE_CYCAR The modification of resident application life cycle requires successful
authentication.

O.EXTEND The TOE, when properly specified and authorised, must support
functionality modification or enhancement.

BIOS Objectives
The following security objective is defined at BIOS level.

Objective Description

O.AUTHE_ATR The modification of ATR files requires authorisation (authentication of the
card manufacturer or applet privileges).

C h a p t e r 4 – S e c u r i t y O b j e c t i v e s

O B E R T H U R C A R D S Y S T E M S24

Environment-Related Security Objectives
The environment-related security objectives concern the following levels:

• TOE development environment
• TOE environment
• TOE IT environment

TOE Development Environment
The following security objectives are defined for the TOE development environment.

Objective Description

O.AUTHO_PEOPLE Specifications, software, detailed design, schematics/layout or any other
design information must be accessible only to authorised personnel
(physical, personnel, organisational and technical procedures).

O.TOE_DESIGN The TOE must:

• Be designed in a secure manner, that is focusing on program and
data integrity

• Use all security features and perform security mechanisms as
required by the TOE designer (e.g. cryptography)

It is assumed that TOE functionalities are suitably tested during phase 1.

O.DEV_TOOLS To guarantee program and data integrity, the TOE must be designed in a
secure manner, by exclusively using

• Software development tools (compilers, assemblers, linkers,
simulators, verifiers)

• Software-hardware integration testing tools (emulators)

O.SOFT_DLV_IC The software under development and the IC masked with the software
must be delivered through a trusted delivery and verification procedure that
must guarantee integrity and confidentiality.

O.SOFT_DLV_TR The software under development and the IC masked with the software
must be delivered to the correct party through a trusted delivery and
verification procedure that must ensure full traceability.

TOE Environment
The following security objectives are defined for the TOE environment.

Objective Description

O.MSKEY_MGT The transport key must be:

• Stored in a secured area

• Exchanged between the platform developer and the IC manufacturer
in a secured manner to respect key integrity and confidentiality

O.DEV_APPLET The applets must be designed in a secured manner to respect key integrity
and confidentiality.

O.VERIF_COD All applets must be verified by a verifier before signature. All applets loaded
must be signed.

O.CODE_MGT The applet code, data and keys must be transmitted in a secured manner
to ensure confidentiality and integrity. The actors involved are the applet
personaliser, manufacturer, Card Issuer and applet developer.

O.TOE_MGT During phases 2, 3 and 4, the IC manufacturer must guarantee TOE
confidentiality and integrity.

E n v i r o n m e n t - R e l a t e d S e c u r i t y O b j e c t i v e s

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 25

TOE IT Environment
The following security objectives are defined for the TOE IT environment.

Objective Description

O.CRYPT_IC The IC must provide a set of security features:

• Cryptographic operations (DES, RSA); these operations must ensure
integrity checking and key confidentiality

• True random generation

• Erasing (deallocation) of cryptographic buffers

O.IC_PROT The IC must protect against manipulation of the:

• Hardware

• Software and data stored in the chip RAM, ROM and EEPROM

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 27

CHAPTER 5 – IT SECURITY REQUIREMENTS

Chapter Overview
This chapter defines the detailed IT security requirements that must be satisfied by the TOE
or its environment. IT security requirements address only the security objectives for the TOE
and its IT environment.

TOE Security Functional Requirements
All functional requirements are drawn from Common Criteria, Version 2.1, Part 2, except for
Security Functional Component, FAU_LST.1. The details of this component and rationale for
its inclusion are given in this section. This requirement and its corresponding rationale are
extracted from the SCSUG-SCPP Protection Profile document.

Explicit Security Requirements
A sequence-related audit list function (FAU_LST.1 – Audit list generation) is defined with
the ability to directly specify the audit information to be recorded. It supports TOE security
without imposing any unnecessary requirements. This function is defined in its entirety as
follows.

FAU_LST.1 – Audit list generation

Management No management activities foreseen.

Audit No actions identified that should be auditable if FAU_LST Audit list
generation is included in the PP/ST.

Subfunctions

FAU_LST.1.1 The TSF must be able to generate an audit list of the following auditable
events:

• All auditable events for the minimum, basic, detailed or non-specified
audit levels

• Assignment: specifically defined auditable events

FAU_LST.1.2 The TSF must record within each audit record at least the following
information:

• Assignment

• Audit relevant information

Dependencies None.

C h a p t e r 5 – I T S e c u r i t y R e q u i r e m e n t s

O B E R T H U R C A R D S Y S T E M S28

This definition is required as the TOE is unpowered, except when connected to a CAD
device. Any time and date information that may be available is dependent on the CAD, which
is not considered to be a trusted source for this information. Audit data cannot, therefore, be
linked to time and date but must depend on sequence of operations. This requires the
elimination of two of the elements included in FAU_GEN.1 (Audit data generation).

Element State

FAU_GEN.1.1 The TSF must be able to generate an audit record of the following
auditable events:

! Startup and shutdown of the audit functions

FAU_GEN.1.2 The TSF must record within each audit record at least the following
information:

• Date and time of the event

• Type of event

• Subject identity

• Outcome (success or failure) of the event

The lack of a reliable time and date prevents FAU_GEN.1.2-a element requirement to be met.
Likewise, for element FAU_GEN.1.1-a, in the absence of the time and date, the audit list will
either exist or the information will not be available. Recording the startup and shutdown of
the audit functions makes little sense. Thus, neither of these elements is included in
FAU_LST.1. Additionally, the memory capacity of the TOE is extremely limited. It is not
practical to impose a requirement that introduces overhead not absolutely essential to the
security needs of the product.

Thus, the audit function in its classical sense is not a useful concept for this TOE. At best, the
TOE should preserve some information, which could be of use when identifying faults and
vulnerabilities. This information can be recorded in the sequence of its occurrence.

FAU_LST.1 (Audit List Generation) is modelled on FAU_GEN.1 (Audit Data Generation),
which has a dependency on FPT_STM.1 (Reliable Time Stamps). As discussed in this section
and in the previous discussion regarding the justification for unmet dependencies on
FPT_STM.1, it is not appropriate to include this dependency on FAU_LST.1. There are
therefore no dependencies for FAU_LST.1.

FAU_GEN.1 (Audit Data Generation) is a dependency for a variety of other requirements.
The intent of FAU_LST.1 is identical to that of FAU_GEN.1 in that it requires the generation
of specific types of audit information, which can then be acted upon by the other
requirements. FAU_LST.1 is, therefore, an appropriate substitution for FAU_GEN.1 in
meeting these dependencies.

T O E S e c u r i t y F u n c t i o n a l R e q u i r e m e n t s

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 29

Class FAU: Security Audit

FAU_ARP – Security audit automatic response

FAU_ARP.1 – Security alarms

Subfunctions

FAU_ARP.1.1 The TSF must take an action among the following list upon detection of a
potential security violation:

1. Make the card mute

2. Block the action that produced the security violation, throw an
exception and lock the responsible applet

Dependencies FAU_SAA.1 Potential violation analysis

FAU_LST – Audit list generation

FAU_LST.1 – Audit list generation

Subfunctions

FAU_LST.1.1 The TSF shall be able to generate an audit list of the following auditable
events:

• All auditable events for the none level of audit

• specified in the following list : security exceptions, invalid
reference exceptions, object integrity loss

FAU_LST.1.2 The TSF shall record within each audit record at least the following
information:

• type of event

• subject identity

Note : Only failures are recorded

Dependencies No dependencies

C h a p t e r 5 – I T S e c u r i t y R e q u i r e m e n t s

O B E R T H U R C A R D S Y S T E M S30

FAU_SAA – Security audit analysis

FAU_SAA.1 – Potential violation analysis

Subfunctions

FAU_SAA.1.1/
HARD

The TSF must be able to apply a set of rules when monitoring the audited
events and based on these rules must indicate a potential TSP violation.

FAU_SAA.1.2/
HARD

The TSF must enforce the following rules when monitoring audited events:

• Accumulation or combination of the following auditable events known
to indicate a potential security violation; indication by the hardware
that the reset was caused by exception sensors

• Any other rules: none

FAU_SAA.1.1/
SOFT

The TSF must be able to apply a set of rules when monitoring the audited
events and based on these rules indicate a potential TSP violation.

FAU_SAA.1.2/
SOFT

The TSF must enforce the following rules when monitoring audited events:

• Accumulation or combination of the following auditable events known
to indicate a potential security violation:

1. Card Manager life cycle inconsistency audited through the self-
test mechanism and the lifecycle checks in all administration
operations (TERMINATED)

2. Unauthorised object access outside the active context audited
through the firewall mechanism; automatic throw of a security
exception

3. Invalid access to a reference audited through the object access
mechanism; automatic throw of an invalid reference exception

4. Inconsistency of the EEPROM integrity flag: make the card mute

5. Audit log

6. Non-integrity of a key object audited through the key usage
mechanism; integrity loss notifications

• Any other rules: after the platform reset if nmax records are present in
the audit log file, the card is mute

Dependencies FAU_GEN.1 Audit data generation

FAU_SAR – Security audit review

FAU_SAR.1 – Audit review

Subfunctions

FAU.SAR.1.1 The TSF must provide U.Card_Issuer with the capability to read
notifications of the occurrence of the following events:

• Security exceptions

• Invalid reference exceptions

• Object integrity loss from the audit records

FAU.SAR.1.2 The TSF must provide the audit records in a manner suitable for the user to
interpret the information.

Dependencies FAU_GEN.1 Audit data generation

FAU_STG – Protected audit trail storage

FAU_STG.1 – Security audit event storage

Subfunctions

FAU.STG.1.1 The TSF must protect the stored audit records from unauthorised deletion.

FAU.STG.1.2 The TSF must be able to prevent and detect modifications to the audit
records.

Dependencies FAU_GEN.1 Audit data generation

T O E S e c u r i t y F u n c t i o n a l R e q u i r e m e n t s

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 31

Class FCO: Communication

FCO_NRO – Non-repudiation of origin

FCO_NRO.1 – Selective proof of origin

Subfunctions

FCO_NRO.1.1/
SHARINT

The TSF must be able to generate evidence of origin for transmitted
method invocation on recipient request.

FCO_NRO.1.2/
SHARINT

The TSF must be able to relate the context of the information originator and
the parameters of the information to which the evidence applies.

FCO_NRO.1.3/
SHARINT

The TSF must provide a capability to verify the evidence of origin of the
information given to the recipient during invocation.

Note: The shareable interface must be managed.

FCO_NRO.1.1/
CMOPINI

The TSF must be able to generate evidence of origin for the transmitted
D.LOADFILE and ASG.APPPRN on originator request.

FCO_NRO.1.2/
CMOPINI

The TSF must be able to relate the AS.KEYSET_VALUE of the originator
of the information and the APDU command of the information to which the
evidence applies.

FCO_NRO.1.3/
CMOPINI

The TSF must provide a capability to verify the evidence of origin of the
information given to the recipient via the secure channel.

Note: This function is applicable when the Card Manager life cycle phase
is OP_READY or INITIALISED.

Dependencies FIA_UID.1 Timing of identification

FCO_NRO.2 – Enforced proof of origin

Subfunctions

FCO_NRO.2.1/
DAP

The TSF must enforce the generation of evidence of origin for the
transmitted CAP file at all times.

FCO_NRO.2.2/
DAP

The TSF must be able to relate the AS.KEYSET_VALUE of the originator
of the information and the CAP file components of the information to which
the evidence applies.

FCO_NRO.2.3/
DAP

The TSF must provide a capability to verify the evidence of origin of
information given to the recipient during CAP file loading.

Note: DAP verification.

FCO_NRO.2.1/
CMSECURE

The TSF must enforce the generation of evidence of origin for the
transmitted D.LOADFILE, AS.KEYSET_VALUE, ASG.APPPRN, D.GLPIN
at all times.

FCO_NRO.2.2/
CMSECURE

The TSF must be able to relate the AS.KEYSET_VALUE of the originator
of the information and the APDU command of the information to which the
evidence applies.

FCO_NRO.2.3/
CMSECURE

The TSF must provide a capability to verify the evidence of origin of the
information given to the recipient via the secure channel.

Note: This function is applicable when the Card Manager life cycle is
SECURED (for load files and privileges).

Dependencies FIA_UID.1 Timing of identification

Class FCS: Cryptographic support

C h a p t e r 5 – I T S e c u r i t y R e q u i r e m e n t s

O B E R T H U R C A R D S Y S T E M S32

FCS_CKM – Cryptographic key generation

FCS_ CKM.1 – Cryptographic key generation

Subfunctions

FCS_CKM.1.1 /
RSA

The TSF must generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm (RSA) and specified cryptographic
key sizes of 512, 768, 1024 or 2048 bits and meeting the ANSI X9.31
standard.

Dependencies FCS_COP.1 Cryptographic operation

FCS_CKM.4 Cryptographic key destruction

FMT_MSA.2 Secure security attributes

FCS_ CKM.3 – Cryptographic key access

Subfunctions

FCS_CKM.3.1 The TSF must perform the following types of cryptographic key access in
accordance with a specified cryptographic key access method (see the
table on the following page) and meeting the following standards:

1. Open Platform Card Specification, Chapters 8 and 9.9

2. Visa Open Platform Card Implementation Specification, Chapter 9.3

3. Java Card 2.1.1 – Application Programming Interfaces,
Javacard.security and Javacard.crypto packages.

T O E S e c u r i t y F u n c t i o n a l R e q u i r e m e n t s

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 33

FCS_ CKM.3 – Cryptographic key access

Cryptographic
Key Access Type

Cryptographic Key Access Methods/
Commands

DES Commands:

PUT_KEY
EXTERNAL AUTHENTICATE
INITIALIZE UPDATE

ProviderSecurityDomain key access methods:

decryptVerifyKey
openSecureChannel
unwrap
verifyExternalAuthenticate

APICrypto key access methods:

Key.clearKey
DES.getKey
DES.setKey
Signature.init
Signature.update
Signature.sign
Signature.verify
Cipher.init
Cipher.update
Cipher.doFinal

RSA ProviderSecurityDomain key access method:

DecryptVerifyKey

APICrypto key access methods:

Key.clearKey
RSAPrivateCRTKey.setP
RSAPrivateCRTKey.setQ
RSAPrivateCRTKey.setPQ
RSAPrivateCRTKey.setDP1
RSAPrivateCRTKey.setDQ1
RSAPrivateCRTKey.getP
RSAPrivateCRTKey.getQ
RSAPrivateCRTKey.getPQ
RSAPrivateCRTKey.getDP1
RSAPrivateCRTKey.getDQ1
RSAPrivateKey.setModulus
RSAPrivateKey.setExponent
RSAPrivateKey.getModulus
RSAPrivateKey.getExponent
RSAPublicKey.setModulus
RSAPublicKey.setExponent
RSAPublicKey.getModulus
RSAPublicKey.getExponent
Signature.init
Signature.update
Signature.sign
Signature.verify
Cipher.init
Cipher.update
Cipher.doFinal

Dependencies FDP_ITC.1 Import of user data without security attributes

FCS_CKM.4 Cryptographic key destruction

FMT_MSA.2 Secure security attributes

C h a p t e r 5 – I T S e c u r i t y R e q u i r e m e n t s

O B E R T H U R C A R D S Y S T E M S34

FCS_ CKM.4 – Cryptographic key destruction

Subfunctions

FCS_CKM.4.1 The TSF must destroy cryptographic keys in accordance with a specified
cryptographic key destruction method (that also prevents the destroyed
keys from being referenced) and meeting the following standards:

• Visa Open Platform Card Implementation Specification, Chapter 6.4.2:
Key Renewal and Replacement

• ISO 11166 for asymmetric keys (RSA) and ISO 11568 for symmetric
keys (DES)

Dependencies FDP_ITC.1 Import of user data without security attributes

FMT_MSA.2 Secure security attributes

FCS_COP – Cryptographic operation

FCS_ COP.1 – Cryptographic operation

Subfunctions

FCS_COP.1.1 /
DES

The TSF must perform signature, verification of signature, encryption and
decryption in accordance with a specified DES cryptographic algorithm and
cryptographic key sizes of 56 bits (DES) and 112 bits or 168 bits (triple-
DES) and meeting the following standards:

• FIPS PUB 46-3, Data Encryption Standard (ANSI X3.92)

• FIPS PUB 81, DES Modes of Operation

• Information Processing Modes of Operation for a 64-Bit Block Cipher
Algorithm, ISO 8372 (1987)

• Banking – Key Management, ISO 8732 (1988)

• ISO 9797 (1994), Information Technology – Security techniques: Data
integrity mechanism using a cryptographic check function employing a
block cipher algorithm

FCS_COP.1.1 /
RSA

The TSF must perform signature, verification of encryption and decryption
in accordance with a specified RSA cryptographic algorithm and
cryptographic key sizes of 512, 768, 1024 or 2048 bits and meeting the
following standards:

• Digital Signatures using Reversible Public Key Cryptography for the
Financial Services Industry (rDSA), ANSI X9.31

• Public Key Cryptography using RSA for the Financial Services
Industry, ISO / IEC 9796-1, Annex A, Section A.4 and A.5, and
Annex C

• PKCS#1 The Public Key Cryptography Standards, RSA Data Security
Inc. 1993

Dependencies FDP_ITC.1 Import of user data without security attributes

FCS_CKM.4 Cryptographic key destruction

FMT_MSA.2 Secure security attributes

T O E S e c u r i t y F u n c t i o n a l R e q u i r e m e n t s

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 35

Class FDP: User data protection

FDP_ACC – Access control policy

FDP_ACC.1 – Subset access control

Subfunctions

FDP_ACC.1.1/
JCREPRIV

The TSF must enforce the JCREPRIV access control performed by the API
OCSystem on the following list of subjects, objects and operations.

Subject: S.CM

Objects: ATR files
Card Manager life cycle
Applet life cycle
Applet privileges
Applet export rights
Transport key
Applet
CAP file
Package

Operations: setATR
lockCard
useCard
SMWithTransportKey
delete
setDefaultApplet
setStatus
setAID
setAIDRef
setRights
getRights.getAIDRef
getRights
Install
LoadInit
LoadNext
LoadEnd

FDP_ACC.1.1/
APPPRIV

The TSF must enforce the APPPRIV access control performed by the API
OPSystem on the following list of subjects, objects and operations.

Subject: S.Applet

Objects: ATR files
Card Manager life cycle
Applet life cycle
Global PIN

Operations: setATRHistoricalBytes
TerminateCard
CMLock
lockApplet
setCardContentState
setPin
verifPin

Dependencies FDP_ACF.1 Security attribute based access control

C h a p t e r 5 – I T S e c u r i t y R e q u i r e m e n t s

O B E R T H U R C A R D S Y S T E M S36

FDP_ACC.2 – Complete access control

Subfunctions

FDP_ACC.2.1/
PP

The TSF must enforce the prepersonalisation access control on S.Resident
application and for all objects and operations among the subjects and
objects covered by the SFP.

FDP_ACC.2.2/
PP

The TSF must ensure that all operations between any subject in the TSC
and any object within the TSC are covered by an access control SFP.

FDP_ACC.2.1/
FIREWALL

The TSF must enforce the FIREWALL access control on S.Applet and for
all D.DATAOBJ objects and the operations among the subjects and objects
covered by the SFP.

FDP_ACC.2.2/
FIREWALL

The TSF must ensure that all operations between any subject in the TSC
and any object within the TSC are covered by an access control SFP.

FDP_ACC.2.1/
CM

The TSF must enforce the CM access control on S.CM and for the
D.LOADFILE, AS.KEYSET_VALUE, D.GLPIN, ASG.APPPRIV,
AS.CMLIFECYC, AS.KEYSET_VERSION, D.APPLIFECYC and
ASG.CARDREG objects and all operations among the subjects and objects
covered by the SFP.

FDP_ACC.2.2/
CM

The TSF must ensure that all operations between any subject in the TSC
and any object within the TSC are covered by an access control SFP.

Dependencies FDP_ACF.1 Security attribute based access control

FDP_ACF – Access control function

FDP_ACF.1 – Security attribute based access control

Subfunctions

FDP_ACF.1.1/
JCREPRIV

The TSF must enforce the JCREPRIV access control when writing to
objects based on AS.CMCONTEXT.

FDP_ACF.1.2/
JCREPRIV

The TSF must enforce the following rules to determine if an operation
among controlled subjects and objects is allowed:

Current Context = AS.CMCONTEXT

FDP_ACF.1.3/
JCREPRIV

The TSF must explicitly authorise access of the subjects to the objects
based on the following additional rules:

None

FDP_ACF.1.4/
JCREPRIV

The TSF must explicitly deny access of the subjects to the objects based
on the following additional rules:

None

FDP_ACF.1.1/
APPPRIV

The TSF must enforce the APPPRIV access control when writing to objects
based on ASG.APPPRIV.

DP_ACF.1.2/
APPPRIV

The TSF must enforce the following rule to determine if an operation
among controlled subjects and controlled objects is allowed:

The current applet privileges allow this operation.

FDP_ACF.1.3/
APPPRIV

The TSF must explicitly authorise access of the subjects to the objects
based on the following additional rules:

None

FDP_ACF.1.4/
APPPRIV

The TSF must explicitly deny access of the subjects to the objects based
on the following additional rules:

None

FDP_ACF.1.1/
PP

The TSF must enforce the prepersonalisation access control to objects
based on AS.AUTH_MSK_STATUS.

FDP_ACF.1.2/
PP

The TSF must enforce the following rules to determine if an operation
among controlled subjects and controlled objects is allowed:

AS.AUTH_MSK_STATUS = TRUE

T O E S e c u r i t y F u n c t i o n a l R e q u i r e m e n t s

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 37

FDP_ACF.1 – Security attribute based access control

Subfunctions
(cont.)

FDP_ACF.1.3/
PP

The TSF must explicitly authorise access of subjects to objects based on
the following additional rules:

None

FDP_ACF.1.4/
PP

The TSF must explicitly deny access of subjects to objects based on the
following additional rules:

None

FDP_ACF.1.1/
FIREWALL

The TSF must enforce the FIREWALL access control on objects based on
AS.CURCONTEXT.

FDP_ACF.1.2/
FIREWALL

The TSF must enforce the following rules to determine if an operation
among controlled subjects and controlled objects is allowed (see Java
Card 2.1.1 – JCRE , Section 6)

Current Context = Object Context

FDP_ACF.1.3/
FIREWALL

The TSF must explicitly authorise access of the subjects to the objects
based on the following additional rule:

Object context = JCRE context

FDP_ACF.1.4/
FIREWALL

The TSF must explicitly deny access of the subjects to the objects based
on the following additional rules:

None

FDP_ACF.1.1/
CM

The TSF must enforce the CM access control to the objects based on
AS.AUTH_CM_STATUS and AS.SECURITY_LEVEL.

FDP_ACF.1.2/
CM

The TSF must enforce the following rules to determine if an operation
among controlled subjects and controlled objects is allowed:

AS.AUTH_CM_STATUS = TRUE

If AS.SECURITY_LEVEL and MAC # 0, the integrity of imported objects is
ensured

If AS.SECURITY_LEVEL and ENC # 0, the confidentiality of imported
objects is ensured

FDP_ACF.1.3/
CM

The TSF must explicitly authorise access of the subjects to the objects
based on the following additional rules:

None

FDP_ACF.1.4/
CM

The TSF must explicitly deny access of the subjects to the objects based
on the following additional rules:

None

Dependencies FDP_ACC.1 Subset access control

FMT_MSA.3 Static attribute initialisation

FDP_ETC – Export to outside TSF control

FDP_ETC.1 – Export of user data without security attributes

Subfunctions

FDP_ETC.1.1/
AUT

The TSF must enforce the CM access control when exporting user data,
controlled under the SFP(s), outside the TSC.

FDP_ETC.1.2/
AUT

The TSF must export the user data without the associated security
attributes.

FDP_ETC.1.1/
FIREWALL

The TSF must enforce the FIREWALL access control when exporting user
data, controlled under the SFP(s), outside the TSC.

FDP_ETC.1.2/
FIREWALL

The TSF must export the user data without the associated security
attributes.

Dependencies FDP_ACC.1 Subset access control

C h a p t e r 5 – I T S e c u r i t y R e q u i r e m e n t s

O B E R T H U R C A R D S Y S T E M S38

FDP_ITC – Import from outside TSF control

FDP_ITC.1 – Import of user data without security attributes

Subfunctions

FDP_ITC.1.1/
FIRE_1

The TSF must enforce the FIREWALL access control on the DES key,
RSA key, D.PIN value import, applet data and D.BYTECOD when
importing user data, controlled under the SFP, from outside the TSC.

Note: For bytecode: putfield, <t>astore.

FDP_ITC.1.2/
FIRE_1

The TSF must ignore any security attributes associated with the user data
when imported from outside the TSC.

FDP_ITC.1.3/
FIRE_1

The TSF must enforce the following rules when importing user data
controlled under the SFP from outside the TSC:

None

FDP_ITC.1.1/
CM

The TSF must enforce the CM access control when importing user data,
controlled under the SFP, from outside the TSC.

FDP_ITC.1.2/
CM

The TSF must ignore any security attributes associated with the user data
when imported from outside the TSC.

FDP_ITC.1.3/
CM

The TSF must enforce the following rules when importing user data
controlled under the SFP from outside the TSC:

None

FDP_ITC.1.1/
APPPRIV

The TSF must enforce the APPPRIV access control when importing user
data, controlled under the SFP, from outside the TSC.

FDP_ITC.1.2/
APPPRIV

The TSF must ignore any security attributes associated with the user data
when imported from outside the TSC.

FDP_ITC.1.3/
APPPRIV

The TSF must enforce the following rules when importing user data
controlled under the SFP from outside the TSC:

None

Dependencies FDP_ACC.1 Subset access control

FMT_MSA.3 Static attribute initialisation

FDP_ITC.2 – Import of user data with security attributes

Subfunctions

FDP_ITC.2.1/
CM_CAPFILE

The TSF must enforce the CM access control when importing user data,
controlled under the SFP, from outside the TSC.

FDP_ITC.2.2/
CM_CAPFILE

The TSF must use the security attributes associated with the imported user
data.

FDP_ITC.2.3/
CM_CAPFILE

The TSF must ensure that the protocol used provides for the unambiguous
association between the security attributes and the user data received.

FDP_ITC.2.4/
CM_CAPFILE

The TSF must ensure that interpretation of the security attributes of the
imported user data is as intended by the source of the user data.

FDP_ITC.2.5/
CM_CAPFILE

The TSF must enforce the following rules when importing user data
controlled under the SFP from outside the TSC:

None

Note: This function is applicable when importing the CAP file.

Dependencies FDP_ACC.1 Subset access control

FTP_TRP.1 Trusted path

FPT_TDC.1 Inter-TSF basic TSF data consistency

T O E S e c u r i t y F u n c t i o n a l R e q u i r e m e n t s

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 39

FDP_RIP – Residual information protection

FDP_RIP.1 – Subset residual information protection

Subfunctions

FDP_RIP.1.1/
DEALL_JAVAOBJ

The TSF must ensure that any previous information content of a resource
is no longer available to the following objects when the resource is
deallocated:

• All Java objects

The TSF must ensure that there is no access path to the transient objects.

FDP_RIP.1.1/
ALL_OBJTRANS

The TSF must ensure that any previous information content of a resource
is no longer available to the following objects when the resource is
allocated:

• Transient objects

FDP_RIP.1.1/
DEALL_GARB

The TSF must ensure that any previous information content of a resource s
no longer available to the following objects when the resource is
deallocated:

• Garbage collector

FDP_RIP.1.1/
DEALL_CRYPTO

The TSF must ensure that any previous information content of a resource s
no longer available to the following objects when the resource is
deallocated:

• Cryptographic buffers

FDP_RIP.1.1/
DEALL_TRANS

The TSF must ensure that any previous information content of a resource s
no longer available to the following objects when the resource is
deallocated.

• Transaction buffer

FDP_RIP.1.1/
ALL_APDU

The TSF must ensure that any previous information content of a resource s
no longer available to the following objects when the resource is
deallocated:

• APDU buffer

Dependencies None.

FDP_SDI – Stored data integrity

FDP_SDI.2 – Stored data integrity monitoring and action

Subfunctions

FDP_SDI.2.1/
EEPROM

The TSF must monitor user data stored within the TSC for EEPROM
integrity errors on all objects, based on the following attributes:

AS.EEPROM_FLAG

FDP_SDI.2.2/
EEPROM

On detection of a data integrity error, the TSF must make the card mute.

FDP_SDI.2.1/
AUDITLOG

The TSF must monitor user data stored within the TSC for audit log
integrity errors on all objects, based on the following attributes:

Audit log checksum

FDP_SDI.2.2/
AUDITLOG

On detection of a data integrity error, the TSF must make the card mute.

FDP_SDI.2.1/
ROM

The TSF must monitor user data stored within the TSC for ROM integrity
errors on all objects, based on the following attributes:

ROM code checksum

FDP_SDI.2.2/
ROM

On detection of a data integrity error, the TSF must make the card mute.

FDP_SDI.2.1/
JAVAOBJ

The TSF must monitor user data stored within the TSC for D.JAVAOBJ
integrity errors on all objects, based on the following attributes:

D.JAVAOBJ checksum

C h a p t e r 5 – I T S e c u r i t y R e q u i r e m e n t s

O B E R T H U R C A R D S Y S T E M S40

FDP_SDI.2 – Stored data integrity monitoring and action

Subfunctions
(cont.)

FDP_SDI.2.2/
JAVAOBJ

On detection of a data integrity error, the TSF must record the error in the
audit log file and notify the error by throwing an exception.

FDP_SDI.2.1/
BYTECOD

The TSF must monitor user data stored within the TSC for D.BYTECOD
integrity errors on all objects, based on the following attributes:

D.BYTECOD checksum

FDP_SDI.2.2/
BYTECOD

On detection of a data integrity error, the TSF must record the error in the
audit log file, lock the selected applet and notify the error by throwing an
exception.

Dependencies None.

FDP_TCT – Inter-TSF user data confidentiality transfer protection

FDP_UCT.1 – Basic data exchange confidentiality

Subfunctions

FDP_UCT.1.1/
PP

The TSF must enforce the prepersonalisation access control to be able to
receive objects in a manner protected from unauthorised disclosure.

FDP_UCT.1.1/
CM

The TSF must enforce the CM access control to be able to receive objects
in a manner protected from unauthorised disclosure.

Dependencies FTP_TRP.1 Trusted path

FDP_ACC.1 Subset access control

FDP_UIT – Inter-TSF user data integrity transfer protection

FDP_UIT.1 – Data exchange integrity

Subfunctions

FDP_UIT.1.1/
SECURE

The TSF must enforce the CM access control to be able to receive user
data in a manner protected from modification errors.

FDP_UIT.1.2/
SECURE

On receipt of user data, the TSF must be able to determine whether a
modification has occurred.

Note: If a modification has been made, it took place during secure
channel transmission.

FDP_UIT.1.1/
KEYCHECK

The TSF must enforce the CM access control to be able to receive user
data in a manner protected from modification errors.

FDP_UIT.1.2/
KEYCHECK

On receipt of user data, the TSF must be able to determine whether a
modification has occurred.

Note: If a modification has been made, it took place between generation
of the key and its reception.

FDP_UIT.1.1/
DAP

The TSF must enforce the CM access control to be able to receive user
data in a manner protected from modification errors.

FDP_UIT.1.2/
DAP

On receipt of user data, the TSF must be able to determine whether a
modification has occurred.

Note: If a modification has been made, it took place between verification
of the CAP file and its reception.

Dependencies FDP_ACC.1 Subset access control

FTP_TRP.1 Trusted path

T O E S e c u r i t y F u n c t i o n a l R e q u i r e m e n t s

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 41

Class FIA: Identification and Authentication

FIA_AFL – Authentication failures

FIA_AFL.1 – Authentication failure handling

Subfunctions

FIA_AFL.1.1/CM The TSF must detect when one unsuccessful authentication attempt occurs
related to U.Card_Issuer authentication.

FIA_AFL.1.2/CM When the defined number of unsuccessful authentication attempts has
been reached or exceeded, the TSF must slow down the next
authentication in accordance with the following function.

The waiting time is exponential with a maximum number of unsuccessful
authentications of 15.

FIA_AFL.1.1/PP The TSF must detect when three unsuccessful authentication attempts
occur related to U.Card_manufacturer authentication.

FIA_AFL.1.2/PP When the defined number of unsuccessful authentication attempts has
been reached or exceeded, the TSF must make the card mute.

FIA_AFL.1.1/
APP

The TSF must detect when the user-defined maximum number of
unsuccessful authentication attempts is reached related to any user
authentication using a PIN (1 to 127 for OwnerPIN and 3 to 15 for
GlobalPIN).

FIA_AFL.1.2/
APP

When the defined number of unsuccessful authentication attempts has
been reached or exceeded, the TSF must block the PIN.

Dependencies FIA_UAU.1 Timing of authentication

FIA_ATD – User attribute definition

FIA_ATD.1 – User attribute definition

Subfunctions

FIA_ATD.1.1/
CARD_MANUF

The TSF must maintain the following list of security attributes belonging to
individual users:

AS.AUTH_MSK_STATUS

FIA_ATD.1.1/
CARD_ISSUER

The TSF must maintain the following list of security attributes belonging to
individual users:

AS.CMLIFECYC
AS.CMCONTEXT
AS.KEYSET_VERSION
AS.KEYSET_VALUE

FIA_ATD.1.1/
APPLET

The TSF must maintain the following list of security attributes belonging to
individual users:

ASG.APPPRIV
AS.CURCONTEXT

Dependencies None.

C h a p t e r 5 – I T S e c u r i t y R e q u i r e m e n t s

O B E R T H U R C A R D S Y S T E M S42

FIA_SOS – Specification of secrets

FIA_SOS.1 – Verification of secrets

Subfunctions

FIA_SOS.1.1/
RSA

The TSF must provide a mechanism to verify that secrets meet the RSA
generation key metric (Miller-Rabin method).

Dependencies None.

FIA_SOS.2 – TSF generation of secrets

Subfunctions

FIA_SOS.2.1/
RANDOM

The TSF must provide a mechanism to generate secrets that meet the
random metric (see FIPS PUB 140-1, Security requirements for
cryptographic modules).

FIA_SOS.2.2/
RANDOM

The TSF must be able to enforce the use of TSF generated secrets for:

• Card Manager and Card Issuer authentication

• Secure channel management

Dependencies None.

FIA_UAU – User authentication

FIA_UAU.1 – Timing of authentication

Subfunctions

FIA_UAU.1.1 The TSF must allow the TSF-mediated actions of the following list on
behalf of the user to be performed before the user is authenticated.

Resident application: Get Challenge
Get Data
Manage Channel
Select Applet

Card Manager: Get Data
Initialise Update

FIA_UAU.1.2 The TSF must require each user to be successfully authenticated before
allowing any other TSF-mediated actions on behalf of that user.

Dependencies FIA_UID.1 Timing of identification

FIA_UAU.3 – Unforgeable authentication

Subfunctions

FIA_UAU.3.1 The TSF must prevent use of authentication data that has been forged by
any user of the TSF.

FIA_UAU.3.2 The TSF must prevent use of authentication data that has been copied
from any other user of the TSF.

Dependencies None.

FIA_UAU.4 – Single-use authentication mechanisms

Subfunctions

FIA_UAU.4.1/
CARD_MANUF

The TSF must prevent reuse of authentication data related to the Card
Manufacturer authentication mechanism.

FIA_UAU.4.1/
CARD_ISSUER

The TSF must prevent reuse of authentication data related to the Card
Issuer authentication mechanism.

Dependencies None.

T O E S e c u r i t y F u n c t i o n a l R e q u i r e m e n t s

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 43

FIA_UAU.7 – Protected authentication feedback

Subfunctions

FIA_UAU.7.1/
CARD_MANUF

The TSF must provide only the result of the authentication (NOK) and the
random to the user while the authentication is in progress.

FIA_UAU.7.1/
CARD_ISSUER

The TSF must provide only the result of the authentication (NOK), the
keyset version, the starting key index, the card random and the card
cryptogram to the user while the authentication is in progress.

Dependencies FIA_UAU.1 Timing of authentication

FIA_UID – User identification

FIA_UID.1 – Timing of identification

Subfunctions

FIA_UID.1.1 The TSF must allow the Card Manager to be executed on behalf of the
user before the user is identified.

FIA_UID.1.2 The TSF must require each user to be successfully identified before
allowing any other TSF-mediated actions on behalf of that user.

Note: This execution is possible only if the CM is the default applet.

Dependencies None.

FIA_USB – User-subject binding

FIA_USD.1 – User-subject binding

Subfunctions

FIA_USB.1.1 The TSF must associate the appropriate user security attributes with the
subjects acting on behalf of that user.

Dependencies FIA_ATD.1 User attribute definition

Class FMT: Security Management

FMT_MOF – Management of functions in TSF

FMT_MOF.1 – Management of security function behaviour

Subfunctions

FMT_MOF.1.1/
RES_APP

The TSF must restrict the ability to disable the functions of the resident
application to R.Prepersonaliser:

• GET CHALLENGE

• EXTERNAL AUTHENTICATE

• LOAD STRUCTURE

• INSTALL

• LOAD APPLET

• GET DATA

FMT_MOF.1.1/
TOE

The TSF must restrict the ability to modify the behaviour of the TOE
functions:

• All functions to R.Prepersonaliser.

Note: The evaluated application (TOE) does not contain any additional
code.

Dependencies FMT_SMR.1 Security roles

C h a p t e r 5 – I T S e c u r i t y R e q u i r e m e n t s

O B E R T H U R C A R D S Y S T E M S44

FMT_MSA – Management of security attributes

FMT_MSA.1 – Management of security attributes

Subfunctions

FMT_MSA.1.1/
PP

The TSF must enforce the prepersonalisation access control to restrict the
ability to modify the AS.MSKEY security attributes to R.Prepersonaliser.

FMT_MSA.1.1/
CM_MOD

The TSF must enforce the CM access control to restrict the ability to modify
the AS.KEYSET_VERSION, AS.KEYSET_VALUE, Default selected
privilege and AS.CMLIFECYC security attributes to R.Card_Manager.

Note: Other privileges cannot be modified.

FMT_MSA.1.1/
CM_DEL

The TSF must enforce the CM access control to restrict the ability to delete
the AS.KEYSET_VERSION and AS.KEYSET_VALUE security attributes to
R.Card_Manager.

FMT_MSA.1.1/
PRIV_MOD

The TSF must enforce the APPPRIV access control to restrict the ability to
modify the AS.CMLIFECYC security attributes to R.Applet_privilege.

Dependencies FDP_ACC.1 Subset access control

FMT_SMR.1 Security roles

FMT_MSA.2 – Secure security attributes

Subfunctions

FMT_MSA.2.1 The TSF must ensure that only secure values are accepted for security
attributes.

Dependencies ADV_SPM.1 Informal TOE security policy model

FDP_ACC.1 Subset access control

FMT_MSA.1 Management of security attributes

FMT_SMR.1 Security roles

FMT_MSA.3 – Static attribute initialisation

Subfunctions

FMT_MSA.3.1 The TSF must enforce the CM access control SFP to provide restrictive
default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2 The TSF must allow the R.Personaliser to specify alternative initial values
to override the default values when an object or information is created.

Note: The personaliser can only specify initial values for the keyset.

Dependencies FMT_MSA.1 Management of security attributes

FMT_SMR.1 Security roles

FMT_MTD – Management of TSF data

FMT_MTD.1 – Management of TSF data

Subfunctions

FMT_MTD.1.1/CI The TSF must restrict the ability to modify the AS.CMID, AS.APID,
AS.KEYSET_VALUE attributes for DAP verification to R.Personaliser.

FMT_MTD.1.1/
CARDREG

The TSF must restrict the ability to query the AS.APID attribute for
R.Card_Manager and R.Use_API.

FMT_MTD.1.1/
AUDIT

The TSF must restrict the ability to delete all information included in the
audit log, except integrity errors, for R.Card_Manager.

Note: This function is available if the state of the Card Manager is not
SECURED or LOCKED.

Dependencies FMT_SMR.1 Security roles

T O E S e c u r i t y F u n c t i o n a l R e q u i r e m e n t s

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 45

FMT_MTD.2 – Management of limits on TSF data

Subfunctions

FMT_MTD.2.1/
GLBPIN

The TSF must restrict the specification of the limits for
D.NB_REMAINTRYGLB to R.Card_Manager.

FMT_MTD.2.2/
GLBPIN

The TSF must take the following actions, if the TSF data has reached or
exceeded the indicated limits:

Block D.GLPIN

FMT_MTD.2.1/
OWNPIN

The TSF must restrict the specification of the limits for
D.NB_REMAINTRYOWN to R.Use_API.

FMT_MTD.2.2/
OWNPIN

The TSF must take the following actions, if the TSF data has reached or
exceeded the indicated limits:

Block D.OWNPIN

Dependencies FMT_MTD.1 Management of TSF data

FMT_SMR.1 Security roles

FMT_SMR – Security management roles

FMT_SMR.1 – Security roles

Subfunctions

FMT_SMR.1.1 The TSF must maintain the R.Sign_Load_File roles.

FMT_SMR.1.2 The TSF must be able to associate users with roles.

Dependencies FIA_UID.1 Timing of identification

FMT_SMR.2 – Restrictions on security roles

Subfunctions

FMT_SMR.2.1 The TSF must maintain the roles defined in the table below.

FMT_SMR.2.2 The TSF must be able to associate users with roles.

FMT_SMR.2.3 The TSF must ensure that the conditions defined in the table below are
satisfied.

Roles Conditions

R.Prepersonaliser Successful authentication (of the Card
Manufacturer) using the transport key and card still
in the prepersonalisation state

R.Personaliser Successful authentication (of the Card
Manufacturer or Card Issuer) using a keyset of the
Card Manager, with the CM life cycle phase
changing from OP_READY to SECURED

R.Card_Manager Successful authentication (of the Card Issuer)
using a keyset, with the CM life cycle phase
changing from OP_READY to SECURED

R.Use_API Successful identification (of the applet), with the
applet life cycle phase after SELECTABLE

R.Applet_privilege Modification of the CM life cycle, ATR and Global
PIN only possible for a privileged applet

Dependencies FIA_UID.1 Timing of identification

Hierarchy Hierarchical to FMT_SMR.1

C h a p t e r 5 – I T S e c u r i t y R e q u i r e m e n t s

O B E R T H U R C A R D S Y S T E M S46

Class FPR: Privacy

FPR_UNO – Unobservability

FPR_UNO.1 – Unobservability

Subfunctions

FPR_UNO.1.1 The TSF must ensure that any users are unable to observe the following
operations on the following objects by the following subjects:

Subject Operation Object

S.Applet Comparison of PIN value D.GLPIN
D.OWNPIN

S.Applet
S.CM

Import and use D.KEY

S.Applet Comparison of two byte arrays D.ARRAY

Dependencies None.

Class FPT: Protection of the TOE Security Functions

FPT_FLS – Fail secure

FPT_FLS.1 – Failure with preservation of secure state

Subfunctions

FPT_FLS.1.1 The TSF must preserve a secure state when the following types of failures
occur:

• Invalid reference exception

• Code or data integrity failure

• Power loss while processing

Dependencies ADV_SPM.1 Informal TOE security policy model

FPT_RCV – Trusted recovery

FPT_RCV.4 – Function recovery

Subfunctions

FPT_RCV.4.1 The TSF must ensure that an anti-tearing failure scenario has the property
that the SF either completes successfully, or for the indicated failure
scenario, recovers to a consistent and secure state.

Dependencies ADV_SPM.1 Informal TOE security policy model

FPT_RVM – Reference mediation

FPT_RVM.1 – Non-bypassability of the TSP

Subfunctions

FPT_RVM.1.1 The TSF must ensure that TSP enforcement functions are invoked and
succeed before each function within the TSC is allowed to proceed.

Dependencies None

T O E S e c u r i t y F u n c t i o n a l R e q u i r e m e n t s

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 47

FPT_SEP – Domain separation

FPT_SEP.1 – TSF domain separation

Subfunctions

FPT_SEP.1.1 The TSF must maintain a security domain for its own execution that
protects it from interference and tampering by untrusted subjects.

FPT_SEP.1.2 The TSF must enforce separation between the security domains of
subjects in the TSC.

Note: There is a separation of the security domain between the Card
Manager and the applets (the CM is written in Java) and between
transients of different logical channels.

Dependencies None

FPT_TDC – Inter-TSF TSF data consistency

FPT_TDC.1 – Inter-TSF basic TSF data consistency

Subfunctions

FPT_TDC.1.1 The TSF must provide the capability to consistently interpret
AS.KEYSET_VALUE, when shared between the TSF and another trusted
IT product.

FPT_TDC.1.2 The TSF must use the PUT KEY data format when interpreting the TSF
data from another trusted IT product: key generator.

Dependencies None

FPT_TST – TSF self test

FPT_TST.1 – TSF testing

Subfunctions

FPT_TST.1.1/
RESET

The TSF must run a suite of self tests at each card reset to demonstrate
the correct operation of the TSF.

FPT_TST.1.2/
RESET

The TSF must provide authorised users with the capability to verify the
integrity of the TSF data.

FPT_TST.1.3/
RESET

The TSF must provide authorised users with the capability to verify the
integrity of stored TSF executable code.

FPT_TST.1.1/
TOE

The TSF must run a suite of self tests while executing the TOE to
demonstrate the correct operation of the TSF.

FPT_TST.1.2/
TOE

The TSF must provide authorised users with the capability to verify the
integrity of the TSF data.

FPT_TST.1.3/
TOE

The TSF must provide authorised users with the capability to verify the
integrity of stored TSF executable code.

Dependencies FPT_AMT.1 Abstract machine testing

Class FRU: Resource Utilisation

FRU_RSA – Resource allocation

FRU_RSA.1 – Maximum quotas

Subfunctions

FRU_RSA.1.1 The TSF must enforce maximum quotas of the following resources:
EEPROM that S.Applet can use throughout the applet life time.

Dependencies None.

C h a p t e r 5 – I T S e c u r i t y R e q u i r e m e n t s

O B E R T H U R C A R D S Y S T E M S48

Class FTA: TOE Access

FTA_LSA – Limitation on scope of selectable attributes

FTA_LSA.1 – Limitation on scope of selectable attributes

Subfunctions

FTA_LSA.1.1/
SECURE

The TSF must restrict the scope of the AS.SESSION_KEY session security
attributes based on:

AS.KEYSET_VERSION
AS.KEYSET_VALUE
AS.CURCONTEXT
AS.LOGIC_CHANNEL_NB

Dependencies None.

Class FTP: Trusted Path/Channels

FTP_TRP – Trusted path

FTP_TRP.1 – Trusted path

Subfunctions

FTP_TRP.1.1 The TSF must provide a communication path between itself and local users
that:

• Is logically distinct from other communication paths

• Provides assured identification of its end points and protection of the
communicated data from modification or disclosure

FTP_TRP.1.2 The TSF must permit local users to initiate communication via the trusted
path.

FTP_TRP.1.3 The TSF must require the use of the trusted path for loading of keysets and
D.GLPIN.

Note: The applet may use the trusted path to load data and the bytecode,
or to check the integrity of applet data, keys and privileges.

Dependencies None.

T O E S e c u r i t y A s s u r a n c e R e q u i r e m e n t s

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 49

TOE Security Assurance Requirements
For this evaluation, TOE security assurance requirements are high and the assurance level is
EAL 4, augmented with additional assurance components:

• ADV_IMP.2
• ALC_DVS.2
• AVA_VLA.4

ADV_IMP.2 – Implementation of the TSF
The TSF is implemented as follows.

Element Implementation

Developer action
elements

The developer must provide the implementation representation for the
entire TOE security functions.

Contents and
presentation of
evidence elements

The implementation representation must:

• Unambiguously define the TOE security functions with such a level of
details that the TOE security functions can be generated without
further design decisions

• Be internally consistent

• Describe the relationships between all portions of the implementation

Evaluator action
elements

The evaluator must:

• Confirm that the information provided meets all requirements for
content and presentation of evidence

• Determine that the implementation representation is an accurate and
complete instantiation of the TOE security functional requirements

ALC_DVS.2 – Sufficiency of Security Measures
The security measures are implemented as follows.

Element Implementation

Developer action
elements

The developer must produce development security documentation.

Contents and
presentation of
evidence elements

The development security documentation:

• Describe all the physical, procedural, personnel and other security
measures that are necessary to protect the confidentiality and integrity
of the TOE design and implementation in its development
environment

• Provide evidence that these security measures are followed during
the development and maintenance of the TOE

The evidence must justify that the security measures provide the necessary
level of protection to maintain the confidentiality and integrity of the TOE.

Evaluator action
elements

The evaluator must confirm that the:

• Information provided meets all requirements for content and
presentation of evidence

• Security measures are being applied

C h a p t e r 5 – I T S e c u r i t y R e q u i r e m e n t s

O B E R T H U R C A R D S Y S T E M S50

AVA_VLA.4 – Highly resistant
High resistance is implemented as follows.

Element Implementation

Developer action
elements

The developer must:

• Perform and document an analysis of the TOE deliverables searching
for ways in which a user can violate the TSP

• Document the disposition of identified vulnerabilities

Contents and
presentation of
evidence elements

The document must show, for all identified vulnerabilities, that the
vulnerability cannot be exploited in the intended environment for the TOE.

The documentation must justify that the TOE, with the identified
vulnerabilities, is resistant to obvious penetration attacks.

The evidence must show that the search for vulnerabilities is systematic.

The analysis documentation must provide a justification that the analysis
completely addresses the TOE deliverables.

Evaluator action
elements

The evaluator must:

• Confirm that the information provided meets all requirements for
content and presentation of evidence

• Conduct penetration testing, building on the developer vulnerability
analysis, to ensure that identified vulnerabilities have been addressed

• Perform an independent vulnerability analysis

• Perform independent penetration testing, based on the independent
vulnerability analysis, to determine the exploitability of additional
identified vulnerabilities in the intended environment

• Determine that the TOE is resistant to penetration attacks performed
by an attacker possessing a high attack potential

I T E n v i r o n m e n t S e c u r i t y R e q u i r e m e n t s

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 51

IT Environment Security Requirements

FAU_ARP.1 – Security alarms

Subfunctions

FAU_ARP.1.1/
PHIL

The TSF must take an action among the following list on detection of a
potential security violation:

• Reset the card

Dependencies FAU_SAA.1 Potential violation analysis

FAU_SAA.1 – Potential violation analysis

Subfunctions

FAU_SAA.1.1/
PHIL

The TSF must be able to apply a set of rules when monitoring the audited
events and based on these rules indicate a potential violation of the TSP.

FAU_SAA.1.2/
PHIL

The TSF must enforce the following rules when monitoring audited events:

• Low frequency of clock input

• High frequency of clock input

• Low voltage power supply

• High voltage power supply

• Low temperature

• High temperature

• High voltage for the write process to the EEPROM

Note: Limits are chosen such that proper and secure function within these
limits is guaranteed.

Dependencies FAU_GEN.1 Audit data generation

FCS_COP.1 – Cryptographic operation

Subfunctions

FCS_COP.1.1/
DES_PHIL

The TSF must perform encryption and decryption in accordance with a
specified Triple DES cryptographic algorithm and cryptographic key sizes
of 112 bits that meet the following standard:

• FIPS PUB 46-3 (ANSI X3.92), KEYING option 2

FCS_COP.1.1/
RSA_PHIL

The TSF must raise an integer to a power modulo in accordance with a
specified RSA cryptographic algorithm and cryptographic key sizes of
1024 bits that meet the following standard:

• ISO / IEC 9796-1, Annex A, Sections A.4 and A.5 and Annex C

FCS_COP.1.1/
RND

The TSF must perform random number generation in accordance with a
specified cryptographic algorithm (no algorithm) and cryptographic key
sizes (no key) that meet the following standard:

• FIPS 184.2

Note: An entropy of at least 7 bits is required in each byte.

Dependencies FDP_ITC.1 Import of user data without security attributes

FCS_CKM.4 Cryptographic key destruction

FMT_MSA.2 Secure security attributes

C h a p t e r 5 – I T S e c u r i t y R e q u i r e m e n t s

O B E R T H U R C A R D S Y S T E M S52

FDP_RIP.1 – Subset residual information protection

Subfunctions

FDP_RIP.1.1/
PHIL

The TSF must ensure that any previous information content of a resource
is no longer available to the following objects when the resource is
deallocated:

• DES cryptoprocessor registers

Note: The DES cryptoprocessor registers are deallocated by the IC.

Dependencies None

FPR_UNO.1 – Unobservability

Subfunctions

FPR_UNO.1.1/
PHIL

The TSF must ensure that any users are unable to observe the operations
using the CPU, DES coprocessor or FAMEX coprocessor on the data
stored in EEPROM or RAM or generated by the random number generator
by the TOE.

Dependencies None.

FPT_PHP.2 – Notification of physical attack

Subfunctions

FPT_PHP.2.1/
PHIL

The TSF must provide unambiguous detection of physical tampering that
might compromise the TSF.

FPT_PHP.2.2/
PHIL

The TSF must provide the capability to determine whether physical
tampering with the TSF devices or elements has occurred.

FPT_PHP.2.3/
PHIL

For the power supply block, internal frequency generation and chip
temperature, the TSF must monitor the devices and elements and notify
the platform by setting the sensor reset bit when physical tampering with
the TSF devices or elements has occurred.

Hierarchy Hierarchical to FPT_PHP.1.

Dependencies FMT_MOF.1 Management of security functions behaviour

FPT_PHP.3 – Resistance to physical attack

Subfunctions

FPT_PHP.3.1/
PHIL

The TSF must resist changing operational conditions at all times:

• Frequency of the external clock

• Power supply

• Temperature

It must respond automatically so that that the TSP is not violated.

Dependencies None.

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 53

CHAPTER 6 –
TOE SUMMARY SPECIF ICATION

Chapter Overview
This chapter reviews the:

• TOE security functions and their strength levels
• Assurance measures

TOE Security Functions

F1 – Exceptions Management
A potential attack analysis automatically throws an exception. This stops the current process.

It notifies the error by the following actions.

• It writes it in the audit log if its type can be analysed as a security violation.
• It locks the applet that caused the security exception.
• It executes a procedure to process exceptions written by the applet developer (see

Exception Handling in the Java Card 2.1.1 – Virtual Machine Specifications document).
• Otherwise, it outputs an error status.

F2 – Integrity of the CAP File
The CAP file must be signed. This signature is checked by the TOE when loading the CAP
file. Loading is denied if the CAP file integrity check fails.

This function uses a probabilistic mechanism and is consequently SOF –HIGH.

Secure Channel
The TOE provides security services related to information exchanged between the TOE and
external users. The life cycle of the Card Manager determines the level of security
requirements for exchanges with the Card Issuer.

C h a p t e r 6 – T O E S u m m a r y S p e c i f i c a t i o n

O B E R T H U R C A R D S Y S T E M S54

The following services are also available for applets.

Service Description

F3 – Integrity of data, keys and
privileges (secure channel)

A MAC of the data transmitted along with the data insures
that the data transmitted by the Card Issuer is received
unaltered by the TOE.

This function uses a probabilistic mechanism and is
consequently SOF –HIGH.

F4 – Confidentiality of code and
data during loading (secure
channel)

The confidential data is encrypted using a DES algorithm.

This function uses a probabilistic mechanism and is
consequently SOF –HIGH.

F5 – Card Issuer Authentication (Administrator
Authentication)
Mutual authentication at the beginning of a communication session, establishing a secure
channel, is mandatory prior to any relevant data being transferred to the TOE.

This function uses a probabilistic mechanism and is consequently SOF –HIGH.

F6 – Sensitive Data Confidentiality
Confidentiality is ensured during comparison of two memory blocks in RAM or in EEPROM:

• PIN values
• Bytes arrays

The TOE ensures the confidentiality of residual data:

• With FAT management and garbage collector
• By erasing the EEPROM while deallocating
• By erasing the transient arrays while allocating

F7 – Anti-Tearing and Transactions
A transaction is a logical set of updates of persistent data. The TOE provides robust support
for atomic transactions, so that data is automatically restored to its original pre-transaction
state if the transaction does not complete normally. This mechanism protects against events,
such as power loss in the middle of a transaction.

The number of remaining tries for the PIN is decremented before the comparison to avoid
attack by tearing.

F8 – Ratification
This TSF:

• Manages the number of remaining tries and the PIN validation flag
• Slows down the Card Issuer authentication timing
• Records unsuccessful authentication of the Card Manufacturer

F11 – EEPROM Quota
The card issuer can determine a limit for non-volatile data space per applet for its entire life.

T O E S e c u r i t y F u n c t i o n s

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 55

F12 – Sensitive Data Integrity
The integrity of the keys, PIN and sensitive applet data is checked. This operation is protected
against disclosure of manipulated data.

This function uses a probabilistic mechanism and is consequently SOF –HIGH.

F13 – Objects Integrity
Before use, the integrity of the Java objects, Card Registry objects (AID privileges), keyset
versions and audit log files is checked.

This function uses a probabilistic mechanism and is consequently SOF –HIGH.

F14 – Package Integrity
Before executing an applet, its package integrity is checked.

This function uses a probabilistic mechanism and is consequently SOF –HIGH.

F15 – ROM Code Integrity
The ROM code integrity is checked:

• At each reset (partial check)
• During manufacturer authentication via an EXTERNAL AUTHENTICATE command

(full check)

This function uses a probabilistic mechanism and is consequently SOF –HIGH.

F17 – Internal Role Management: Card Registry
The internal roles for applets is managed using privileges stored in the card registry.

F18 – Startup Coherence
During the startup sequence, if any of the following events occurs, the card mutes itself:

• Inconsistency of Card Manager life cycle
• Bad result for test of integrity of EEPROM
• Loss of integrity of audit log file (F13)
• Loss of integrity of ROM code (F15)
• Number of records in audit log file equals or exceeds the limits (F1, F12, and F13)
• Loss of integrity of optional code area
• Blocked random generator
• Incorrect operation of the cryptographic module
• Loss of integrity of FAT (check FAT)
• Throw of an exception

F19 – Audit Log File Assessments
This function tests whether the number of records in the audit log file equals or exceeds the
limits (F1, F12, and F13), and mutes the card if the test fails.

C h a p t e r 6 – T O E S u m m a r y S p e c i f i c a t i o n

O B E R T H U R C A R D S Y S T E M S56

F20 – Record of Security Information in Audit Log
If an exception, the type of which can be analysed as a security violation, occurs, its type and
the reference of the current applet are recorded in the audit log file.

F24 – Card Manufacturer Authentication
During the prepersonalisation phase, manufacturer authentication at the beginning of a
communication session is mandatory prior to any relevant data being transferred to the TOE.

This function uses a probabilistic mechanism and is consequently SOF –HIGH.

F26 – Resident Application Dispatcher
During the prepersonalisation phase, this function determines whether manufacturer
authentication is required for each command.

F28 – Key Integrity from its Generation: KeyCheck Value
This function verifies the key integrity using a key check value algorithm as defined in the
Visa Open Platform Card Specification, Chapter 9.3.4.

This function uses a probabilistic mechanism and is consequently SOF –HIGH.

F29 – Card Manager Dispatcher
While the Card Manager is selected, this function determines whether card issuer
authentication is required for each command.

If a secure channel is opened, this function determines whether secure messaging is required
for each command, depending on the Card Manager life cycle.

F30 – Read the Audit Log File
This function reads the audit log file and exports it in a comprehensive form. It requires
successful authentication of the card issuer.

F31 – Secret Generation

Function Description

Random generation This function based on the IC random number generator
generates a random number.

Session key generation To ensure a high level of secure communication for each
session involving the Card Manager, this function generates
a session key. DES session keys are used in support of
secure channel operations.

This function uses a probabilistic mechanism and is consequently SOF –HIGH.

F32 – RSA Key Generation
The TOE provides applets with a service for RSA key generation. This service uses the IC
RSA coprocessor.

This function uses a probabilistic mechanism and is consequently SOF –HIGH.

T O E S e c u r i t y F u n c t i o n s

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 57

F33 – DES Algorithm
The TOE implements this function based on DES hardware.

This function uses a probabilistic mechanism and is consequently SOF –HIGH.

F34 – RSA Algorithm
The TOE implements this function accelerated by the FAMEX coprocessor.

This function uses a probabilistic mechanism and is consequently SOF –HIGH.

Firewall

Function Description

F36 – Applet isolation The TOE supports isolation of contexts and applets.

Isolation means that one applet cannot access the fields or objects of
an applet in another context, unless the other applet explicitly provides
an interface for access.

It implements applet isolation as defined in the Java Card 2.1.1 –
Virtual Machine Specifications, Section 7, and Java Card 2.1.1 –
JCRE, Section 6.

F37 – JCRE privileges Given that the JCRE context is the system context, it has a special
privilege. It can invoke a method of any object on the card. In the TOE,
the Card Manager context is the JCRE context.

F38 – JCRE entry point The JCRE entry points are objects owned by the JCRE context, but
they have been flagged as containing entry point methods.

The firewall protects these objects from access by applets. The entry
point designation allows the methods of these objects to be invoked
from any context.

In the TOE the JCRE entry points are the APDU object and card
runtime exceptions.

If the object is a JCRE entry point, the usual rules for applet isolation
(F36) are changed to permit general access under the control of the
current context.

F39 – Global arrays Global arrays are owned by the JCRE context, but can be accessed
from any context.

In the TOE, the only global array is the APDU buffer.

If the object is a global array, the usual rules for applet isolation (F36)
are changed to permit general access under the control of the current
context.

F40 – Shareable
interface

The shareable interface is used to identify all shared objects. Any
object that needs to be shared through the applet firewall must directly
or indirectly implement this interface. Only those methods specified in a
shareable interface are available through the firewall.

If the applet calls getPreviousContextAID from a method that may be
accessed either from within the applet itself or via a shareable interface
from an external applet, it identifies the caller identity.

F41 – Keyset Version Management
The loading of a keyset can update, delete or add a former keyset.

C h a p t e r 6 – T O E S u m m a r y S p e c i f i c a t i o n

O B E R T H U R C A R D S Y S T E M S58

F43 – DES Key Access
Access to the DES key is in accordance with the standards defined in the Java Card 2.1.1 –
Application Programming Interfaces, Open Platform Card Specification and Visa Open
Platform Card Implementation Specification documents. This access is protected against key
disclosure.

F44 – RSA Key Access
Access to the RSA key is in accordance with the standards defined in the Java Card 2.1.1 –
Application Programming Interfaces document. This access is protected against key
disclosure.

F45 –Transient Arrays Management in Logical Channel
This function ensures isolation of CLEAR_ON_DESELECT transient arrays belonging to
applet(s) executed on different logical channels.

Assurance Measures
TOE security assurance requirements must be high and the scale of evaluation levels
constructed using these components are EAL 4 augmented by the following additional
assurance components:

• ADV_IMP.2
• ALC_DVS.2
• AVA_VLA.4

These components give an augmented confidence in security function efficiency.

Configuration Management
The configuration management tool (PVCS and its procedures) used by the developers meets
the following requirements:

ACM_AUT.1 Partial CM automation

ACM_CAP.4 Generation support and acceptance procedures

ACM_SCP.2 Problem tracking CM coverage

Delivery and Operation
TOE and its associated documentation are given to users in compliance with the following
procedures:

ADO_DEL.2 Detection of modification

ADO_IGS.1 Installation, generation and startup procedures

A s s u r a n c e M e a s u r e s

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 59

Development
TOE development documentation be drawn up to include:

• Functional specifications
• High and Low level design
• Implementation of the entire TSF
• TOE security policy model
• At the end of each document listed, the correspondence between all adjacent pairs of TSF

representation

This documentation is sufficient to meet Assurance Class ADV:

ADV_FSP.2 Fully defined external interfaces

ADV_HLD.2 Security enforcing high-level design

ADV_IMP.2 Implementation of the TSF

ADV_LLD.1 Descriptive low-level design

ADV_RCR.1 Informal correspondence demonstration

ADV_SPM.1 Informal TOE security policy model

Guidance Documents
The expected information required to meet this requirement are present in the following
documentation:

AGD_ADM.1 Administrator guidance

AGD_USR.1 User guidance

Life Cycle Support
OCS procedures specify the method enabling the integrity and confidentiality of the TOE and
its documentation to be guaranteed during the development phase.

The life cycle model used for TOE development is the V cycle. This cycle is clearly defined
in a specific procedure. Maintenance is not applicable to this TOE.

The following languages are used to develop the TOE:

• Java
• C
• Assembly 8051

The compiler is KEIL C51. Documentation is available to the evaluator. This documentation
is sufficient to meet the following requirements:

ALC_DVS.2 Sufficiency of security measures

ALC_LCD.1 Developer defined life-cycle model

ALC_TAT.1 Well-defined development tools

Tests
The Doc 170 will contain all test specifications and associated results (expected and
obtained). Tests concern coverage and its analysis (test of high level design and all functional
tests).

The TOE will be given to an evaluator for independent testing.

C h a p t e r 6 – T O E S u m m a r y S p e c i f i c a t i o n

O B E R T H U R C A R D S Y S T E M S60

Doc 170 and the TOE are sufficient to meet the following requirements:

ATE_COV.2 Analysis of coverage

ATE_DPT.1 Testing: high-level design

ATE_FUN.1 Functional testing

ATE_IND.2 Independent testing – sample

Vulnerability Assessment
The following requirements are met by the documentation presenting an analysis of the
guidance documentation, the strength of the TOE security functions and the analysis of the
TOE identified vulnerabilities:

 AVA_MSU.2 Validation of Analysis

AVA_SOF.1 Strength of TOE security function evaluation

AVA_VLA.4 Highly resistant

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 61

GLOSSARY

Active life/phase
Period with active security functions and no active code.

AID
Applet Identifier.

APDU
Application Protocol Data Unit.

API
Application Programmer Interface.

Applet
Application that can be loaded and executed with the environment of the Java Card platform.

BIOS
Basic Input/Output System.

Card Manager
Main entity representing the issuer and supervising all services available on the card.

CC
Common Criteria.

CM
Card Manager.

CPLC
Card Production Life Cycle.

DAP
Data Authentication Pattern.

G l o s s a r y

O B E R T H U R C A R D S Y S T E M S62

DES
Data Encryption Standard cryptographic module.

EAL
Evaluation Assurance Level.

EEPROM
Electrically Erasable and Programmable Read Only Memory.

ES
Embedded Software.

FAMEX
Coprocessor for public key cryptographic calculations.

FAT
File Allocation Table.

IC
Integrated Circuit.

IT
Information Technology.

JCP
Java Card Platform.

JCRE
Java Card Runtime Environment.

OSP
Organisational Security Policy.

PP
Protection Profile.

G l o s s a r y

J A V A C A R D O P E N P L A T F O R M S E C U R I T Y T A R G E T 63

RNG
Random Number Generation.

ROM
Read Only Memory.

RSA
Rivest, Shamir, Adleman cryptographic module.

Security Domain
Entity representing a supplier, managing the keys and providing cryptographic services for its
applets. A Security Domain is the on-card representative of an application provider. It is a
special key management application that may provide cryptographic services for all the
applications owned by a particular application provider.

SF
Security Function.

SFP
Security Function Policy.

SHA-1
Secure hash standard cryptographic module.

ST
Security Target.

TOE
Target of Evaluation.

TSC
TSF Scope of Control.

TSF
TOE Security Functions.

G l o s s a r y

O B E R T H U R C A R D S Y S T E M S64

TSP
TOE Security Policy.

VM
Virtual Machine.

VOP
Visa Open Platform.

