Certification Report

BSI-DSZ-CC-0810-V2-2014

for

NXP Secure Smart Card Controller P60D024/016/012PVB/PVB(Y) with IC Dedicated Software

from

NXP Semiconductors Germany GmbH

Deutsches
 erteilt vom
 IT-Sicherheitszertifikat
 Bundesamt für Sicherheit in der Informationstechnik

BSI-DSZ-CC-0810-V2-2014

Smartcard Controller

NXP Secure Smart Card Controller P60D024/016/012PVB/PVB(Y) with IC Dedicated Software

from
NXP Semiconductors Germany GmbH
PP Conformance: Security IC Platform Protection Profile, Version 1.0, 15 June 2007, BSI-CC-PP-0035-2007

Functionality:

Assurance:

PP conformant plus product specific extensions Common Criteria Part 2 extended

Common Criteria
Recognition Arrangement for components up to EAL 4

PCommon Criteria

The IT product identified in this certificate has been evaluated at an approved evaluation facility using the Common Methodology for IT Security Evaluation (CEM), Version 3.1 extended by advice of the Certification Body for components beyond EAL 5 and guidance specific for the technology of the product for conformance to the Common Criteria for IT Security Evaluation (CC), Version 3.1.
This certificate applies only to the specific version and release of the product in its evaluated configuration and in conjunction with the complete Certification Report.
The evaluation has been conducted in accordance with the provisions of the certification scheme of the German Federal Office for Information Security (BSI) and the conclusions of the evaluation facility in the evaluation technical report are consistent with the evidence adduced.
This certificate is not an endorsement of the IT product by the Federal Office for Information Security or any other organisation that recognises or gives effect to this certificate, and no warranty of the IT product by the Federal Office for Information Security or any other organisation that recognises or gives effect to this certificate, is either expressed or implied.

Bonn, 4 April 2014
For the Federal Office for Information Security

Bernd Kowalski
L.S

Head of Department

This page is intentionally left blank.

Preliminary Remarks

Under the BSIG ${ }^{1}$ Act, the Federal Office for Information Security (BSI) has the task of issuing certificates for information technology products.
Certification of a product is carried out on the instigation of the vendor or a distributor, hereinafter called the sponsor.

A part of the procedure is the technical examination (evaluation) of the product according to the security criteria published by the BSI or generally recognised security criteria.
The evaluation is normally carried out by an evaluation facility recognised by the BSI or by BSI itself.
The result of the certification procedure is the present Certification Report. This report contains among others the certificate (summarised assessment) and the detailed Certification Results.
The Certification Results contain the technical description of the security functionality of the certified product, the details of the evaluation (strength and weaknesses) and instructions for the user.

[^0]
Contents

A Certification. 7
1 Specifications of the Certification Procedure 7
2 Recognition Agreements 7
3 Performance of Evaluation and Certification 8
4 Validity of the Certification Result 9
5 Publication 9
B Certification Results 11
1 Executive Summary 12
2 Identification of the TOE 13
3 Security Policy. 16
4 Assumptions and Clarification of Scope 16
5 Architectural Information 16
6 Documentation 17
7 IT Product Testing 17
8 Evaluated Configuration 18
9 Results of the Evaluation 19
10 Obligations and Notes for the Usage of the TOE 21
11 Security Target 21
12 Definitions 22
13 Bibliography. 24
C Excerpts from the Criteria 27
CC Part 1: 27
CC Part 3: 28
D Annexes 37

A Certification

1 Specifications of the Certification Procedure

The certification body conducts the procedure according to the criteria laid down in the following:

- BSIG^{2}
- BSI Certification Ordinance ${ }^{3}$
- BSI Schedule of Costs ${ }^{4}$
- Special decrees issued by the Bundesministerium des Innern (Federal Ministry of the Interior)
- DIN EN 45011 standard
- BSI certification: Procedural Description (BSI 7125) [3]
- Common Criteria for IT Security Evaluation (CC), Version 3.1 ${ }^{5}$ [1]
- Common Methodology for IT Security Evaluation, Version 3.1 [2]
- BSI certification: Application Notes and Interpretation of the Scheme (AIS) [4]

2 Recognition Agreements

In order to avoid multiple certification of the same product in different countries a mutual recognition of IT security certificates - as far as such certificates are based on ITSEC or CC - under certain conditions was agreed.

2.1 European Recognition of ITSEC/CC - Certificates (SOGIS-MRA)

The SOGIS-Mutual Recognition Agreement (SOGIS-MRA) Version 3 became effective in April 2010. It defines the recognition of certificates for IT-Products at a basic recognition level and in addition at higher recognition levels for IT-Products related to certain technical domains only.

The basic recognition level includes Common Criteria (CC) Evaluation Assurance Levels EAL1 to EAL4 and ITSEC Evaluation Assurance Levels E1 to E3 (basic). For higher recognition levels the technical domain Smart card and similar Devices has been defined. It includes assurance levels beyond EAL4 resp. E3 (basic). In addition, certificates issued for Protection Profiles based on Common Criteria are part of the recognition agreement.

[^1]As of September 2011 the new agreement has been signed by the national bodies of Austria, Finland, France, Germany, Italy, The Netherlands, Norway, Spain, Sweden and the United Kingdom. Details on recognition and the history of the agreement can be found at https://www.bsi.bund.de/zertifizierung.

The SOGIS-MRA logo printed on the certificate indicates that it is recognised under the terms of this agreement by the nations listed above.

2.2 International Recognition of CC - Certificates (CCRA)

An arrangement (Common Criteria Recognition Arrangement) on the mutual recognition of certificates based on the CC Evaluation Assurance Levels up to and including EAL 4 has been signed in May 2000 (CCRA). It includes also the recognition of Protection Profiles based on the CC.

As of September 2011 the arrangement has been signed by the national bodies of: Australia, Austria, Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, India, Israel, Italy, Japan, Republic of Korea, Malaysia, The Netherlands, New Zealand, Norway, Pakistan, Republic of Singapore, Spain, Sweden, Turkey, United Kingdom, United States of America. The current list of signatory nations and approved certification schemes can be seen on the website: http://www.commoncriteriaportal.org.
The Common Criteria Recognition Arrangement logo printed on the certificate indicates that this certification is recognised under the terms of this agreement by the nations listed above.
This evaluation contains the components ADV_FSP.5, ADV_IMP.2, ADV_INT.3, ADV_SPM.1, ADV_TDS.5, ALC_CMC.5, ALC_CMS.5, ALC_D̄VS.2, ALC_TAT.3, ASE_TSS.2, ATE_COV.3, ATE_DPT.3, ATE_FUN. 2 and AVA_VAN. 5 that are not mutually recognised in accordance with the provisions of the CCRA. For mutual recognition the EAL4 components of these assurance families are relevant.

3 Performance of Evaluation and Certification

The certification body monitors each individual evaluation to ensure a uniform procedure, a uniform interpretation of the criteria and uniform ratings.
The product NXP Secure Smart Card Controller P60D024/016/012PVB/PVB(Y) with IC Dedicated Software has undergone the certification procedure at BSI. This is a re-certification based on BSI-DSZ-CC-0810-2012. Specific results from the evaluation process BSI-DSZ-CC-0810-2012 were re-used.
The evaluation of the product NXP Secure Smart Card Controller P60D024/016/012PVB/PVB(Y) with IC Dedicated Software was conducted by T-Systems GEI GmbH. The evaluation was completed on 20 March 2014. T-Systems GEI GmbH is an evaluation facility (ITSEF) ${ }^{6}$ recognised by the certification body of BSI.
For this certification procedure the sponsor and applicant is: NXP Semiconductors Germany GmbH.

The product was developed by: NXP Semiconductors Germany GmbH.
The certification is concluded with the comparability check and the production of this Certification Report. This work was completed by the BSI.

[^2]
4 Validity of the Certification Result

This Certification Report only applies to the version of the product as indicated. The confirmed assurance package is only valid on the condition that

- all stipulations regarding generation, configuration and operation, as given in the following report, are observed,
- the product is operated in the environment described, as specified in the following report and in the Security Target.
For the meaning of the assurance levels please refer to the excerpts from the criteria at the end of the Certification Report.

The Certificate issued confirms the assurance of the product claimed in the Security Target at the date of certification. As attack methods evolve over time, the resistance of the certified version of the product against new attack methods needs to be re-assessed. Therefore, the sponsor should apply for the certified product being monitored within the assurance continuity program of the BSI Certification Scheme (e.g. by a re-certification). Specifically, if results of the certification are used in subsequent evaluation and certification procedures, in a system integration process or if a user's risk management needs regularly updated results, it is recommended to perform a re-assessment on a regular e.g. annual basis.
In case of changes to the certified version of the product, the validity can be extended to the new versions and releases, provided the sponsor applies for assurance continuity (i.e. re-certification or maintenance) of the modified product, in accordance with the procedural requirements, and the evaluation does not reveal any security deficiencies.

5 Publication

The product NXP Secure Smart Card Controller P60D024/016/012PVB/PVB(Y) with IC Dedicated Software has been included in the BSI list of certified products, which is published regularly (see also Internet: https://www.bsi.bund.de and [5]). Further information can be obtained from BSI-Infoline +49 228 9582-111.
Further copies of this Certification Report can be requested from the developer ${ }^{7}$ of the product. The Certification Report may also be obtained in electronic form at the internet address stated above.

[^3]
B Certification Results

The following results represent a summary of

- the Security Target of the sponsor for the Target of Evaluation,
- the relevant evaluation results from the evaluation facility, and
- complementary notes and stipulations of the certification body.

1 Executive Summary

The Target of Evaluation (TOE) is the "NXP Secure Smart Card Controller P60D024/016/012PVB/PVB(Y) with IC Dedicated Software". It is a hardware platform for the implementation of smart card operating systems supporting multiple applications. The hardware platform provides coprocessors for Triple-DES with up to three keys, AES with different key lengths, large integer arithmetic operations and cyclic redundancy check calculation. In addition the hardware platform includes a True Random Number Generator suitable to generate cryptographic keys. The TOE supports the ISO/IEC 7816 contact interface with UART and the ISO/IEC 14443 A contactless interface. The implementation of multiple applications is supported by the CPU offering different CPU modes with gradual permissions and memory management control supporting the separation of different memory segments. The IC Dedicated Software provides support for the EEPROM write operation. The TOE "NXP Secure Smart Card Controller P60D024/016/012PVB/PVB(Y) with IC Dedicated Software" is referenced as P60D024/016/012PVB/PVB(Y) in the following.
The Security Target [6] is the basis for this certification. It is based on the certified Protection Profile Security IC Platform Protection Profile, Version 1.0, 15 June 2007, BSI-CC-PP-0035-2007 [7].
The TOE Security Assurance Requirements (SAR) are based entirely on the assurance components defined in Part 3 of the Common Criteria (see part C or [1], Part 3 for details). The TOE meets the assurance requirements of the Evaluation Assurance Level EAL 6 augmented by ASE_TSS. 2 and ALC_FLR.1.

The TOE Security Functional Requirements (SFR) relevant for the TOE are outlined in the Security Target [6] and [8], chapter 6.1. They are selected from Common Criteria Part 2 and some of them are newly defined. Thus the TOE is CC Part 2 extended.

The TOE Security Functional Requirements are implemented by the following TOE Security Functionality:

TOE Security Functionality	Addressed issue
SS.RNG	Random Number Generator
SS.HW_DES	Tripple-DES coprocessor
SS.HW_AES	AES coprocessor
SS.CRC	Cyclic Redundancy Check
SS.RECONFIG	Post Delivery Configuration
SF.OPC	Control of Operating Conditions
SF.PHY	Protection against Physical Manipulation
SF.LOG	Logical Protection
SF.COMP	Protection of Mode Control
SF.MEM_ACC	Memory Access Control
SF.SFR_ACC	Special Function Register Access Control
SF.FFW	Firmware Firewall
SF.Firmware	Firmware Support

Table 1: TOE Security Functionalities

For more details please refer to the Security Target [6] and [8], chapter 7.
The assets to be protected by the TOE are defined in the Security Target [6] and [8], chapter 3.1. Based on these assets the TOE Security Problem is defined in terms of Assumptions, Threats and Organisational Security Policies. This is outlined in the Security Target [6] and [8], chapter 3.2 to 3.4 .

This certification covers the configurations of the TOE as outlined in chapter 8.
The strength of the cryptographic algorithms was not rated in the course of this certification procedure (see BSIG Section 9, Para. 4, Clause 2).
The certification results only apply to the version of the product indicated in the certificate and on the condition that all the stipulations are kept as detailed in this Certification Report. This certificate is not an endorsement of the IT product by the Federal Office for Information Security (BSI) or any other organisation that recognises or gives effect to this certificate, and no warranty of the IT product by BSI or any other organisation that recognises or gives effect to this certificate, is either expressed or implied.

2 Identification of the TOE

The Target of Evaluation (TOE) is called:

NXP Secure Smart Card Controller P60D024/016/012PVB/PVB(Y) with IC Dedicated Software

The following table outlines the TOE deliverables:

No	Type	Identifier	Release	Form of Delivery
1	HW	NXP Secure Smart Card Controller P60D024/016/012PVB	nameplate 9047A and a ROM code number between 1 to 4 or 96 to 99	wafer, module, inlay or package
	NXP Secure Smart Card Controller P60D024/016/012PVB(Y)	Nameplate 9047A and a ROM code number between 5 to 95	wafer, module, inlay or package	
2	SW	Test ROM Software (Security IC Dedicated Test Software), Test-ROM on the chip acc. to 9047A_BG002_TESTROM_v1_btos_08v 07_fos_5v0.hex	Version 08.07, 21 September, 2011	stored in ROM on the chip
3	SW	Boot ROM Software (part of the Security IC Dedicated Support Software), Boot-ROM on the chip acc. to 9047A_BG002_TESTROM_v1_btos_08v 07_fos_5v0.hex	Version 08.07, 21 September, 2011	stored in ROM on the chip
4	SW	Firmware Operating System (FOS) (part of the Security IC Dedicated Support Software), Firmware Operating System on the chip acc. to 9047A_BG002_TESTROM_v1_btos_08v 07_fos_5v0.hex	Version 5.00, 21 September, 2011	stored in ROM on the chip

No	Type	Identifier	Release	Form of Delivery
5	DOC	Product Data Sheet SmartMX2 P60D024, Secure high performance smart card controller, NXP Semiconductors, Business Unit Identification	Rev. 4.2, 30 August 2013	electronic form [12]
6	DOC	Instruction set for the SmartMX2 family, Secure smart card controller, NXP Semiconductors, Business Unit Identification	Rev. 3.1, 2 February 2012	electronic form [13]
7	DOC	NXP Secure Smart Card Controller P60D024/P60D016/P60D012 VB Guidance and Operation Manual, NXP Semiconductors,	$\begin{aligned} & \text { Rev. 1.4, } 13 \text { November } \\ & 2012 \end{aligned}$	electronic form [14]
8	DOC	SmartMX2 P60D024/P60D016/P60D012 VB Wafer and delivery specification, NXP Semiconductors	Rev. 3.0, 06 February 2012	electronic form [15]
9	DOC	Product Data Sheet Addendum, SmartMX2 family Post Delivery Configuration, NXP Semiconductors	Rev. 3.2, 04 February 2013	electronic form [16]
10	DOC	Product Data Sheet Addendum, SmartMX2 family Chip Health Mode, NXP Semiconductors	Rev. 3.0, 11 May 2012	electronic form [17]

Table 2: Deliverables of the TOE
The TOE can be delivered with two different versions namely VB and $\mathrm{VB}(\mathrm{Y})$. These versions can be differentiated by the ROM Code number of each TOE. ROM Code numbers 001 to 004 and 096 to 099 are assigned to Version VB, and ROM Code numbers 005 to 095 are assigned to version VB(Y). Note that modification according IAR [24] is included in all devices that have a ROM Code number xxx in the range of 005 to 095. The ROM code number can be identified unambiguously by reading Security Row bytes RCN0 (DFFF8A) and RCN1 (DFF8B), see [12]. In addition the ROM Code number is physically visible on the dice surface according to [15].
Note that only 7 items (the hardware platform and six documents) are delivered since the IC Dedicated Software included in the ROM is delivered on chip as part of the hardware platform. There is one Data Sheet [12] and one Guidance and Operation Manual [14] for all configurations of the TOE. The delivery procedures are described in the Wafer and delivery specification [15].
The hardware platform as part of the TOE is available in different packages as listed in the following table. The table lists in the last column the package types that are supported in this evaluation:

P60D024PVB/ PVB(Y)	P60D016PVB/ PVB(Y)	P60D012PVB/ PVB(Y)	
Ux	Ux	Ux	Wafer not thinner than $50 \mu m$ (The letter " $x "$ " in "Ux" stands for a capital letter or a number, which identifies the wafer type)

P60D024PVB/ PVB(Y)	P60D016PVB/ $\mathrm{PVB}(\mathrm{Y})$	P60D012PVB/ $\mathrm{PVB}(\mathrm{Y})$	
Xn	Xn	Xn	Module (The letter "n" in" Xn" stands for a capital letter or a number, which identifies the module type)
A4	$\mathrm{A4}$		MOB4 module
A6	$\mathrm{A6}$		MOB6 module
Ai	Ai		Inlay (The letter 'i" in "Ai" stands for a capital letter, which identifies both, the inlay type and the package type inside the inlay.)

Table 3: Supported package types
The requirements for the delivery of these package types are described in Chapter 2 of the Guidance and Operation Manual [14] and in Wafer and delivery specification [15], Chapter 4. For each delivery form of the hardware platform NXP BU ID offers two ways of delivery of the TOE:

1. The customer collects the hardware platform himself at the NXP BU ID site.
2. The hardware platform is sent to the customer by NXP BU ID with special protective measures.
The TOE documentation (last six items of table 2) is delivered in electronic form by the document control center of NXP.
The commercial type name is the identification used to order the TOE in the respective major configuration and with the evaluated package type. In consequence this means that a full commercial product name that fits in the variable forms described in table 3 determines that the hardware platform is an evaluated product. In addition the hardware version can be identified by the crypted nameplate " 9047 A " on the surface of the hardware platform as described in sections 4.2 and 3.8 .3 of the Wafer and delivery specification [15]. The nameplate is the same for all configurations. In addition each major configuration has a different device coding described in [12]. The device coding is reproduced in the following table 4. Identification is also possible using the Chip Health Mode. The identification string provided by the command 00h of the Chip Health Mode comprises also the device coding and the firmware version. Each major configuration has a dedicated device coding as listed in the following table.

	$\mathrm{P60D024PVB/PVB(Y)}$	$\mathrm{P60D016PVB/PVB(Y)}$	$\mathrm{P60D012PVB/PVB(Y)}$
DC0	22	22	22
DC1	0 C	0 B	0 A
DC2	00	00	00
DC3	17	17	17
DC4	00h $/$ 01h depending on the configuration	00h / 01h depending on the configuration	00h $/ 01 \mathrm{~h}$ depending on the configuration

Table 4: Device coding of the major configurations

3 Security Policy

The Security Policy is expressed by the set of Security Functional Requirements and implemented by the TOE. As the TOE is a security hardware platform, the security policy of the TOE provides countermeasures against: leakage of information, physical probing, malfunctions, physical manipulations, access to code, access to data memory, abuse of functionality. Hence the TOE shall:

- maintain the integrity and the confidentiality of data stored in the memory of the TOE and
- maintain the integrity, the correct operation and the confidentiality of Security Functions (security mechanisms and associated functions) provided by the TOE.

4 Assumptions and Clarification of Scope

The Assumptions defined in the Security Target and some aspects of Threats and Organisational Security Policies are not covered by the TOE itself. These aspects lead to specific security objectives to be fulfilled by the TOE-Environment. The following topics are of relevance:

- Clarification of "Usage of Hardware Platform (OE.Plat-Appl)"
- Clarification of "Treatment of User Data (OE.Resp-Appl)"
- Protection during composite product manufacturing (OE.Process-Sec-IC)
- Check of initialisation data by the Security IC Embedded Software (OE.Check-Init)

Details can be found in the Security Target [6] and [8], chapter 4.2 and 4.3.

5 Architectural Information

The P60D024/016/012PVB/PVB(Y) smartcard controller is an integrated circuit (IC) providing a hardware platform with IC Dedicated Support Software for a Security IC Embedded Software. A top level block diagram and a list of subsystems can be found within the TOE description of the Security Target [6] and [8]. The complete description of the hardware platform and the IC Dedicates Support Software as well as the complete instruction set of the P60D024/016/012PVB/PVB(Y) smartcard controller can be found in the "Product Data Sheet SmartMX2 P60D024", [12] (and its addendums [16] and [17]) as well as the "Instruction set", [13].
The hardware platform comprises the following components: 8-bit CPU, Special Function Registers, Triple-DES Co-Processor, AES Co-processor, CRC Coprocessor, Fame2 CoProcessor, Memory Management Unit, Copy Machine, Random Number Generator (RNG), Power Module and a module comprising Security Sensors and Filters. The hardware platform comprises a contact-based interface and a contactless interface. The CPU provides three different CPU Modes in order to separate different applications running on the TOE. One CPU Mode is reserved for the Firmware Operating System supporting specific functionality of the hardware platform. The security measures for physical protection are realized within the layout of the whole circuitry.
The Special Function Registers that can be controlled by the Security IC Embedded Software provide one interface to the security functionality of the TOE. The P60D024/016/012PVB/PVB(Y) provides different levels of access control to the SFR with
the different CPU Modes and additional - configurable - access control to Special Function Registers for the User Mode and the Firmware Mode.

The Fame2 does not provide a cryptographic algorithm itself. The modular arithmetic functions are suitable to implement different asymmetric cryptographic algorithms. The coprocessor implements security features to support the protection against fault attacks and timing attacks as described in [6] and [8].

The TOE executes the IC Dedicated Support Software (Boot Software) during the start up to configure and initialise the hardware. This software is executed in the Boot Mode. After the start-up is finished and the CPU Mode changed to System Mode it is not possible to re-enter the Boot Mode without forcing a reset.
The Firmware Operating System provides several functions to the Security IC Embedded Software. The functions can be grouped in support of the EEPROM write operation and support for the contactless communication. Note that Mifare emulations are not part of the current TOE and the related functions provide only dummy interfaces which return an error message. The EEPROM write support performs an additional re-trimming process in order to ensure the endurance of the EEPROM module. The Firmware can be used to activate and maintain the contactless ISO 14443 protocol. A strict separation between this IC Dedicated Support Software and the Security IC Embedded Software is ensured since the Firmware is executed in the Firmware Mode. The System Mode and the User Modes support the partitioning of the memories and can configure a shared memory area in the RAM. The Firmware is able to access the Security IC Embedded Software and the User Data stored in the EEPROM area to support the EEPROM write operation. Code and data of the Firmware Operating System cannot be accessed by the Security IC Embedded Software running in System Mode or User Mode.

The hardware platform comprises a contact based interface and a contactless interface. Both interfaces can be used independent from each other. Depending on the major configuration the contactless interface is disabled, refer to table 5 . Based on a specific minor configuration and an associated clock configuration both interfaces could be used simultaneously also.

6 Documentation

The evaluated documentation as outlined in table 2 is being provided with the product to the customer. This documentation contains the required information for secure usage of the TOE in accordance with the Security Target.

Additional obligations and notes for secure usage of the TOE as outlined in chapter 10 of this report have to be followed.

$7 \quad$ IT Product Testing

The TOE is a Security IC hardware platform with IC Dedicated Software. It is defined uniquely by the name P60D024PVB//PVB(Y), P60D016PVB/PVB(Y) and P60D012PVB/PVB (Y) related to the major configuration. Its implementation representation and their (unique) configurations are exactly specified by the Configuration Lists [11] for the hardware platform and [18] for the IC Dedicated Support Software.

The tests performed by the developer can be divided into the following categories:

1. Tests which are performed in a simulation environment with different tools for the analogue circuitries and for the digital parts of the TOE;
2. Functional tests which are performed with special software to test all TSFIs;
3. Characterisation and verification tests to release the hardware platform for production including tests with different operating conditions as well as special verification tests for security services and security features of the hardware;
4. Functional tests at the end of the production process using IC Dedicated Test Software. These tests are executed for every chip to check its correct functionality and individually trim each device as last step of phase 3 of the life-cycle defined in [7].
The developer tests cover all TSFIs identified in the functional specification as well as in the test documentation. The evaluators were able to repeat the tests of the developer. The tests are repeated and verified against the test protocols provided by the developer. The tests of the developer are repeated by sampling. In addition the evaluators performed independent tests to supplement, augment and to verify the tests performed by the developer. The tests of the evaluators comprise special tests and examination of the hardware platform and the Firmware using open samples. In addition the evaluators perform tests of the hardware platform and the Firmware using different major configurations according to table 5. Minor configuration options were characterised performing the same test under similar conditions for different minor configuration options.

The evaluation provides evidence that the actual version of the hardware platform provides the TOE Security Functionality as specified by the developer. The test results confirm the correct implementation of the TOE Security Functionality.
For penetration testing the evaluators took all TOE Security Functionality into consideration. Extensive penetration testing was performed to test the security mechanisms used to provide the Security Services and Security Features. The tests for the hardware platform and the Firmware comprise the use of bespoke equipment and expert knowledge. The penetration tests considered physical tampering of the hardware platform including information that can be gathered by reverse engineering to support other attacks. Further on attacks that do not modify the hardware platform physically such as side channel analysis for the coprocessors (AES, Triple-DES) and perturbation attacks were performed. The test of the hardware platform and the Firmware comprises attacks that must be averted by the combination of the hardware platform and the Security IC Embedded Software as well as attacks against the hardware platform and the Firmware directly.

8 Evaluated Configuration

The P60D024/016/012PVB/PVB(Y) can be delivered in different major configurations. All major configurations listed in the following table are covered by the evaluation. Due to the naming conventions of the SmartMX2 family the configured TOEs have different names.

	P60D024PVB/PVB(Y)	P60D016PVB/PVB(Y)	P60D012PVB/PVB(Y)
accessible EEPROM for the Security IC	24 kBytes except for 512 Bytes reserved for Security Rows and Embedded	16 kBytes except for 512 Bytes reserved for Security Rows and configuration data of the	12 kBytes except for 512 Bytes reserved for Security Rows and configuration data of the

	P60D024PVB/PVB(Y)	P60D016PVB/PVB(Y)	P60D012PVB/PVB(Y)
Software	manufacturer and 768 Bytes reserved for IC Dedicated Support Software (Firmware OS)	manufacturer and 768 Bytes reserved for IC Dedicated Support Software (Firmware OS)	manufacturer and 768 Bytes reserved for IC Dedicated Support Software (Firmware OS)

Table 5: Overview of major configurations
The P60D024/016/012PVB/PVB(Y) hardware platform was tested including all major configurations as well as all minor configuration options that can be selected based on table 4 in section 1.4.2.2 of [6] and [8]. All major and minor configurations are available to the evaluator. Besides the differences listed in table 5 there are no other differences between the major configurations. The major configuration does not have dependencies to security features. All minor configuration options that are part of the evaluation were tested. The minor configuration options behave as specified and described in [12] and [14]. Therefore the results described in this document are applicable for the major configurations P60D024PVB/PVB(Y), P60D016PVB/PVB(Y) and the P60D012PVB/PVB(Y) as well as for all minor configurations described in [6] and [8].

The major and minor configurations cannot be influenced by the customer. They are selected by the customer according to the Order Entry Form [21] or the related Order Entry Forms for the major configured types (refer to [22] or [23]). The configuration cannot be changed in the Application Mode after delivery of the TOE.
The documentation of the configuration comprises two parts. The general configuration list is included in [19]. The customer specific configuration settings of a product according to the order entry form are listed in [20]. For the customer specific configuration information a configuration template (refer to [20]) is used which is adapted regarding the customer selectable configuration options.

9 Results of the Evaluation

9.1 CC specific results

The Evaluation Technical Report (ETR) [9] was provided by the ITSEF according to the Common Criteria [1], the Methodology [2], the requirements of the Scheme [3] and all interpretations and guidelines of the Scheme (AIS) [4] as relevant for the TOE.
The Evaluation Methodology CEM [2] was used for those components up to EAL5 extended by advice of the Certification Body for components beyond EAL 5 and guidance specific for the technology of the product [4] (AIS 34).
The following guidance specific for the technology was used:
(i) The Application of CC to Integrated Circuits
(ii) Application of Attack Potential to Smartcards
(iii) Guidance, Smartcard Evaluation
(see [4], AIS 25, AIS 26, AIS 37).
For RNG assessment the scheme interpretations AIS 31 was used (see [4]).
To support composite evaluations according to AIS 36 the document ETR for composite evaluation [10] was provided and approved. This document provides details of this
platform evaluation that have to be considered in the course of a composite evaluation on top.

The assurance refinements outlined in the Security Target were followed in the course of the evaluation of the TOE.

As a result of the evaluation the verdict PASS is confirmed for the following assurance components:

- All components of the EAL 6 package including the class ASE as defined in the CC (see also part C of this report)
- The components ASE_TSS. 2 and ALC_FLR. 1 augmented for this TOE evaluation.

As the evaluation work performed for this certification procedure was carried out as a re-evaluation based on the certificate BSI-DSZ-CC-0810-2012, re-use of specific evaluation tasks was possible. The analogue block of the hardware platform P60D024/016/012PVB/PVB(Y) includes an adjustment within the analogue block (cf. [24]). This change was implemented for yield improvement. In addition a minor configuration option was added to allow a start up of the TOE only if the operating conditions specified in ISO/IEC 7816 and/or ISO/IEC 14443 A are provided to the TOE. Further on the Product Data Sheet SmartMX2 P60D024 was updated with respect to the additional minor configuration option. The evaluators performed additional dedicated functional and penetration testing of the adapted analogue block. The different versions VB and VB(Y) of the TOE reflect the unpatched and patched versions of the analogue block. The evaluators found no indication that the change of the analogue block has an impact on the functionality or the side channel behaviour of the TOE. Therefore, parts of the test results of the former hardware evaluation were reused.

The evaluation has confirmed:

- PP Conformance: $\begin{array}{ll}\text { Security IC Platform Protection Profile, Version 1.0, } 15 \text { June 2007, } \\ \text { BSI-CC-PP-0035-2007 [7] }\end{array}$
- for the Functionality: PP conformant plus product specific extensions Common Criteria Part 2 extended
- for the Assurance: Common Criteria Part 3 conformant EAL 6 augmented by ASE_TSS. 2 and ALC_FLR. 1

For specific evaluation results regarding the development and production environment see annex B in part D of this report.

The results of the evaluation are only applicable to the TOE as defined in chapter 2 and the configuration as outlined in chapter 8 above.

9.2 Results of cryptographic assessment

The strength of the cryptographic algorithms was not rated in the course of this certification procedure (see BSIG Section 9, Para. 4, Clause 2). But Cryptographic Functionalities with a security level of lower than 100 bits can no longer be regarded as secure without considering the application context. Therefore, for these functionalities it shall be checked whether the related crypto operations are appropriate for the intended system. Some further hints and guidelines can be derived from the 'Technische Richtlinie BSI TR-02102' (https://www.bsi.bund.de).

Any Cryptographic Functionality that is marked in column 'Security Level above 100 Bits' of the following table with 'no' achieves a security level of lower than 100 Bits (in general context).

Purpose	Cryptographic Mechanism	Standard of Implementation	Key Size in Bits	Security Level above 100 Bits
Cryptographic Primitives	Two-key TDES	$[$ FIPS-46-3] (DES)	$\|\mathrm{K}\|=112$	no
	Three-key TDES	$[$ [FIPS-46-3] (DES)	$\|\mathrm{K}\|=168$	yes
	AES	$[$ [FIPS-197] (AES)	$\|\mathrm{CK}\|=128,192$,	yes

Table 6: TOE cryptographic functionality

10 Obligations and Notes for the Usage of the TOE

The documents as outlined in table 2 contain necessary information about the usage of the TOE and all security hints therein have to be considered. In addition all aspects of Assumptions, Threats and OSPs as outlined in the Security Target not covered by the TOE itself need to be fulfilled by the operational environment of the TOE.

The customer or user of the product shall consider the results of the certification within his system risk management process. In order for the evolution of attack methods and techniques to be covered, he should define the period of time until a re-assessment of the TOE is required and thus requested from the sponsor of the certificate.

Some security measures are partly implemented in the hardware and the IC Dedicated Support Software. These security measures require additional configuration or control or measures to be implemented by the Security IC Embedded Software.

For this reason the TOE includes guidance documentation (see table 2) for the developer of the Security IC Embedded Software on how to securely use the microcontroller chip and the IC Dedicated Support Software. In order to fulfil the security requirements of the Security Target of the TOE the measures have to be implemented by the Security IC Embedded Software as described in the guidance documentation.

In the course of the evaluation of the composite product or system it must be examined if the required measures have been correctly and effectively implemented by the software. Additionally, the evaluation of the composite product or system must also consider the evaluation results as outlined in the document ETR for composite evaluation [10].

11 Security Target

For the purpose of publishing, the Security Target [8] of the Target of Evaluation (TOE) is provided within a separate document as Annex A of this report. It is a sanitised version of the complete Security Target [6] used for the evaluation performed. Sanitisation was performed according to the rules as outlined in the relevant CCRA policy (see AIS 35 [4]).

12 Definitions

12.1 Acronyms

AIS	Application Notes and Interpretations of the Scheme
BSI	Bundesamt für Sicherheit in der Informationstechnik / Federal Office for Information Security, Bonn, Germany
BSIG	BSI-Gesetz / Act on the Federal Office for Information Security
CCRA	Common Criteria Recognition Arrangement
CC	Common Criteria for IT Security Evaluation
CEM	Common Methodology for Information Technology Security Evaluation
CPU	Central Processing Unit
CRC	Cyclic Redundancy Check
DES	Data Encryption Standard
EAL	Evaluation Assurance Level
EEPROM	Electrically Erasable Programmable Read Only Memory
ETR	Evaluation Technical Report
IC	Integrated Circuit
IEC	International Electrotechnical Commission
ISO	International Organization for Standardization
IT	Information Technology
ITSEF	Information Technology Security Evaluation Facility
PP	Protection Profile
RAM	Random Access Memory
ROM	Read Only Memory
SAR	Security Assurance Requirement
SFP	Security Function Policy
SFR	Security Functional Requirement
ST	Security Target
TOE	Target of Evaluation
TSF	TOE Security Functionality
TSFI	TOE Security Functionality Interface
UART	Universal Asynchronous Receiver Transmitter
TP	

12.2 Glossary

Augmentation - The addition of one or more requirement(s) to a package.
Extension - The addition to an ST or PP of functional requirements not contained in part 2 and/or assurance requirements not contained in part 3 of the CC.

Formal - Expressed in a restricted syntax language with defined semantics based on well-established mathematical concepts.
Informal - Expressed in natural language.
Object - A passive entity in the TOE, that contains or receives information, and upon which subjects perform operations.

Protection Profile - An implementation-independent statement of security needs for a TOE type.
Security Target - An implementation-dependent statement of security needs for a specific identified TOE.

Semiformal - Expressed in a restricted syntax language with defined semantics.
Subject - An active entity in the TOE that performs operations on objects.
Target of Evaluation - A set of software, firmware and/or hardware possibly accompanied by guidance.
TOE Security Functionality - Combined functionality of all hardware, software, and firmware of a TOE that must be relied upon for the correct enforcement of the SFRs.

13 Bibliography

[1] Common Criteria for Information Technology Security Evaluation, Version 3.1, Part 1: Introduction and general model, Revision 3, July 2009
Part 2: Security functional components, Revision 3, July 2009
Part 3: Security assurance components, Revision 3, July 2009
[2] Common Methodology for Information Technology Security Evaluation (CEM), Evaluation Methodology, Version 3.1, Rev. 3, July 2009
[3] BSI certification: Procedural Description (BSI 7125)
[4] Application Notes and Interpretations of the Scheme (AIS) as relevant for the TOE ${ }^{8}$.
[5] German IT Security Certificates (BSI 7148), periodically updated list published also in the BSI Website
[6] NXP Secure Smart Card Controller P60D024/016/012PVB/PVB(Y) Security Target, NXP Semiconductors, Business Unit Identification, Rev. 2.2, 04 November 2013 (confidential document)
[7] Security IC Platform Protection Profile, Version 1.0, 15 June 2007, BSI-CC-PP-0035-2007
[8] NXP Secure Smart Card Controller P60D024/016/012PVB/PVB(Y) Security Target lite, NXP Semiconductors, Business Unit Identification, Rev. 2.2, 04 November 2013 (sanitised public document)
[9] Evaluation Technical Report BSI-DSZ-CC-0810, Version 1.7, 20 March 2014, T-Systems GEI GmbH (confidential document)
[10] ETR for composition according to AIS36, NXP P60D024/016/012PVB, T-Systems GEI GmbH, Version 1.7, 11 March 2014 (confidential document)
[11] NXP Secure Smart Card Controller P60D024/016/012eVB/PVB(Y) Configuration List for the hardware platform, NXP Semiconductors, Rev. 2,20, 04 November 2013 (confidential document)

[^4][12] Product Data Sheet SmartMX2 P60D024, Secure high performance smart card controller, NXP Semiconductors, Business Unit Identification, Rev. 4.2, 30 August 2013 (confidential document)
[13] Instruction set for the SmartMX2 family, Secure smart card controller, NXP Semiconductors, Business Unit Identification, Rev. 3.1, 2 February 2012 (confidential document)
[14] NXP Secure Smart Card Controller P60D024/P60D016/P60D012 VB Guidance and Operation Manual, NXP Semiconductors, Rev. 1.4, 13 November 2012 (confidential document)
[15] SmartMX2 P60D024/P60D016/P60D012 VB Wafer and delivery specification, NXP Semiconductors, Rev. 3.0, 06 February 2012 (confidential document)
[16] Product Data Sheet Addendum, SmartMX2 family Post Delivery Configuration, NXP Semiconductors, Rev. 3.2, 04 February 2013 (confidential document)
[17] Product Data Sheet Addendum, SmartMX2 family Chip Health Mode, NXP Semiconductors, Rev. 3.0, 11 May 2012 (confidential document)
[18] NXP Secure Smart Card Controller P60D024/016/012PVB Configuration List for the firmware, NXP Semiconductors, Rev. 1.2, 16 July 2012 (confidential document)
[19] NXP Secure Smart Card Controller P60D024/016/012eVB/PVB(Y) Appendix of the Configuration List for composite evaluation, NXP Semiconductors, Rev. 2.20, 04 November 2013 (confidential document)
[20] NXP Secure Smart Card Controller P60D024/016/012eVB Customer specific Appendix of the Configuration List, NXP Semiconductors, Rev. 2.10, 30 August 2013 (confidential document)
[21] Order Entry Form P60D024, NXP Semiconductors, Business Unit Identification, online document, Release: 2.13
[22] Order Entry Form P60D016, NXP Semiconductors, Business Unit Identification, online document, Release: 2.11
[23] Order Entry Form P60D012, NXP Semiconductors, Business Unit Identification, online document, Release: 2.11
[24] Impact Analysis Report (Change of the Analogue Block and Run mode), P60D024/016/012PVB NXP Secure Smart Card Controller, NXP Semiconductors, Rev. 1.5, 20 November 2013

This page is intentionally left blank.

C Excerpts from the Criteria

CC Part 1:

Conformance Claim (chapter 10.4)

"The conformance claim indicates the source of the collection of requirements that is met by a PP or ST that passes its evaluation. This conformance claim contains a CC conformance claim that:

- describes the version of the CC to which the PP or ST claims conformance.
- describes the conformance to CC Part 2 (security functional requirements) as either:
- CC Part 2 conformant - A PP or ST is CC Part 2 conformant if all SFRs in that PP or ST are based only upon functional components in CC Part 2, or
- CC Part 2 extended - A PP or ST is CC Part 2 extended if at least one SFR in that PP or ST is not based upon functional components in CC Part 2.
- describes the conformance to CC Part 3 (security assurance requirements) as either:
- CC Part 3 conformant - A PP or ST is CC Part 3 conformant if all SARs in that PP or ST are based only upon assurance components in CC Part 3, or
- CC Part 3 extended - A PP or ST is CC Part 3 extended if at least one SAR in that PP or ST is not based upon assurance components in CC Part 3.
Additionally, the conformance claim may include a statement made with respect to packages, in which case it consists of one of the following:
- Package name Conformant - A PP or ST is conformant to a pre-defined package (e.g. EAL) if:
- the SFRs of that PP or ST are identical to the SFRs in the package, or
- the SARs of that PP or ST are identical to the SARs in the package.
- Package name Augmented - A PP or ST is an augmentation of a predefined package if:
- the SFRs of that PP or ST contain all SFRs in the package, but have at least one additional SFR or one SFR that is hierarchically higher than an SFR in the package.
- the SARs of that PP or ST contain all SARs in the package, but have at least one additional SAR or one SAR that is hierarchically higher than an SAR in the package.
Note that when a TOE is successfully evaluated to a given ST, any conformance claims of the ST also hold for the TOE. A TOE can therefore also be e.g. CC Part 2 conformant.
Finally, the conformance claim may also include two statements with respect to Protection Profiles:
- PP Conformant - A PP or TOE meets specific PP(s), which are listed as part of the conformance result.
- Conformance Statement (Only for PPs) - This statement describes the manner in which PPs or STs must conform to this PP: strict or demonstrable. For more information on this Conformance Statement, see Annex D."

CC Part 3:

Class APE: Protection Profile evaluation (chapter 10)

"Evaluating a PP is required to demonstrate that the PP is sound and internally consistent, and, if the PP is based on one or more other PPs or on packages, that the PP is a correct instantiation of these PPs and packages. These properties are necessary for the PP to be suitable for use as the basis for writing an ST or another PP.

Assurance Class	Assurance Components
Class APE: Protection Profile evaluation	APE_INT. 1 PP introduction
	APE_CCL. 1 Conformance claims
	APE_SPD. 1 Security problem definition
	APE_OBJ. 1 Security objectives for the operational environment APE_OBJ. 2 Security objectives
	APE_ECD. 1 Extended components definition
	APE_REQ. 1 Stated security requirements
APE_REQ. 2 Derived security requirements	

APE: Protection Profile evaluation class decomposition"

Class ASE: Security Target evaluation (chapter 11)

"Evaluating an ST is required to demonstrate that the ST is sound and internally consistent, and, if the ST is based on one or more PPs or packages, that the ST is a correct instantiation of these PPs and packages. These properties are necessary for the ST to be suitable for use as the basis for a TOE evaluation."

Assurance Class	Assurance Components
Class ASE: Security Target evaluation	ASE_INT. 1 ST introduction
	ASE_CCL. 1 Conformance claims
	ASE_SPD. 1 Security problem definition
	ASE_OBJ. 1 Security objectives for the operational environment ASE_OBJ. 2 Security objectives
	ASE_ECD. 1 Extended components definition
	ASE_REQ. 1 Stated security requirements ASE_REQ. 2 Derived security requirements
	ASE_TSS. 1 TOE summary specification ASE_TSS. 2 TOE summary specification with architectural design summary

ASE: Security Target evaluation class decomposition

Security assurance components (chapter 7)

"The following Sections describe the constructs used in representing the assurance classes, families, and components."
"Each assurance class contains at least one assurance family."
"Each assurance family contains one or more assurance components."
The following table shows the assurance class decomposition.

Assurance Class	Assurance Components
ADV: Development	ADV_ARC. 1 Security architecture description
	ADV_FSP. 1 Basic functional specification ADV_FSP. 2 Security-enforcing functional specification ADV_FSP. 3 Functional specification with complete summary ADV_FSP. 4 Complete functional specification ADV_FSP. 5 Complete semi-formal functional specification with additional error information ADV_FSP. 6 Complete semi-formal functional specification with additional formal specification
	ADV_IMP. 1 Implementation representation of the TSF ADV_IMP. 2 Implementation of the TSF
	ADV_INT. 1 Well-structured subset of TSF internals ADV_INT. 2 Well-structured internals ADV_INT. 3 Minimally complex internals
	ADV_SPM. 1 Formal TOE security policy model
	ADV_TDS. 1 Basic design ADV_TDS. 2 Architectural design ADV_TDS. 3 Basic modular design ADV_TDS. 4 Semiformal modular design ADV_TDS. 5 Complete semiformal modular design ADV_TDS. 6 Complete semiformal modular design with formal high-level design presentation

Assurance Class	Assurance Components
AGD: Guidance documents	AGD_OPE. 1 Operational user guidance
	AGD_PRE. 1 Preparative procedures
ALC: Life cycle support	ALC_CMC. 1 Labelling of the TOE ALC_CMC. 2 Use of a CM system ALC_CMC. 3 Authorisation controls ALC_CMC. 4 Production support, acceptance procedures and automation ALC_CMC. 5 Advanced support
	ALC_CMS. 1 TOE CM coverage ALC_CMS. 2 Parts of the TOE CM coverage ALC_CMS. 3 Implementation representation CM coverage ALC_CMS. 4 Problem tracking CM coverage ALC_CMS. 5 Development tools CM coverage
	ALC_DEL. 1 Delivery procedures
	ALC_DVS. 1 Identification of security measures ALC_DVS. 2 Sufficiency of security measures
	ALC_FLR. 1 Basic flaw remediation ALC_FLR. 2 Flaw reporting procedures ALC_FLR. 3 Systematic flaw remediation
	ALC_LCD. 1 Developer defined life-cycle model ALC_LCD. 2 Measurable life-cycle model
	ALC_TAT. 1 Well-defined development tools ALC_TAT. 2 Compliance with implementation standards ALC_TAT. 3 Compliance with implementation standards - all parts
ATE: Tests	ATE_COV. 1 Evidence of coverage ATE_COV. 2 Analysis of coverage ATE_COV. 3 Rigorous analysis of coverage
	ATE_DPT. 1 Testing: basic design ATE_DPT. 2 Testing: security enforcing modules ATE_DPT. 3 Testing: modular design ATE_DPT. 4 Testing: implementation representation
	ATE_FUN. 1 Functional testing ATE_FUN. 2 Ordered functional testing
	ATE_IND. 1 Independent testing - conformance ATE_IND. 2 Independent testing - sample ATE_IND. 3 Independent testing - complete
AVA: Vulnerability assessment	AVA_VAN. 1 Vulnerability survey AVA_VAN. 2 Vulnerability analysis AVA_VAN. 3 Focused vulnerability analysis AVA_VAN. 4 Methodical vulnerability analysis AVA_VAN. 5 Advanced methodical vulnerability analysis

Assurance class decomposition

Evaluation assurance levels (chapter 8)

"The Evaluation Assurance Levels (EALs) provide an increasing scale that balances the level of assurance obtained with the cost and feasibility of acquiring that degree of assurance. The CC approach identifies the separate concepts of assurance in a TOE at the end of the evaluation, and of maintenance of that assurance during the operational use of the TOE.

It is important to note that not all families and components from CC Part 3 are included in the EALs. This is not to say that these do not provide meaningful and desirable assurances. Instead, it is expected that these families and components will be considered for augmentation of an EAL in those PPs and STs for which they provide utility."

Evaluation assurance level (EAL) overview (chapter 8.1)

"Table 1 represents a summary of the EALs. The columns represent a hierarchically ordered set of EALs, while the rows represent assurance families. Each number in the resulting matrix identifies a specific assurance component where applicable.
As outlined in the next Section, seven hierarchically ordered evaluation assurance levels are defined in the CC for the rating of a TOE's assurance. They are hierarchically ordered inasmuch as each EAL represents more assurance than all lower EALs. The increase in assurance from EAL to EAL is accomplished by substitution of a hierarchically higher assurance component from the same assurance family (i.e. increasing rigour, scope, and/or depth) and from the addition of assurance components from other assurance families (i.e. adding new requirements).

These EALs consist of an appropriate combination of assurance components as described in Chapter 7 of this CC Part 3. More precisely, each EAL includes no more than one component of each assurance family and all assurance dependencies of every component are addressed.

While the EALs are defined in the CC, it is possible to represent other combinations of assurance. Specifically, the notion of "augmentation" allows the addition of assurance components (from assurance families not already included in the EAL) or the substitution of assurance components (with another hierarchically higher assurance component in the same assurance family) to an EAL. Of the assurance constructs defined in the CC, only EALs may be augmented. The notion of an "EAL minus a constituent assurance component" is not recognised by the standard as a valid claim. Augmentation carries with it the obligation on the part of the claimant to justify the utility and added value of the added assurance component to the EAL. An EAL may also be augmented with extended assurance requirements.

Assurance Class	Assurance Family	Assurance Components by Evaluation Assurance Level						
		EAL1	EAL2	EAL3	EAL4	EAL5	EAL6	EAL7
Development	ADV_ARC		1	1	1	1	1	1
	ADV_FSP	1	2	3	4	5	5	6
	ADV_IMP				1	1	2	2
	ADV_INT					2	3	3
	ADV_SPM						1	1
	ADV_TDS		1	2	3	4	5	6
Guidance Documents	AGD_OPE	1	1	1	1	1	1	1
	AGD_PRE	1	1	1	1	1	1	1
Life cycle Support	ALC_CMC	1	2	3	4	4	5	5
	ALC_CMS	1	2	3	4	5	5	5
	ALC_DEL		1	1	1	1	1	1
	ALC_DVS			1	1	1	2	2
	ALC_FLR							
	ALC_LCD			1	1	1	1	2
	ALC_TAT				1	2	3	3
Security Target Evaluation	ASE_CCL	1	1	1	1	1	1	1
	ASE_ECD	1	1	1	1	1	1	1
	ASE_INT	1	1	1	1	1	1	1
	ASE_OBJ	1	2	2	2	2	2	2
	ASR_REQ	1	2	2	2	2	2	2
	ASE_SPD		1	1	1	1	1	1
	ASE_TSS	1	1	1	1	1	1	1
Tests	ATE_COV		1	2	2	2	3	3
	ATE_DPT			1	1	3	3	4
	ATE_FUN		1	1	1	1	2	2
	ATE_IND	1	2	2	2	2	2	3
Vulnerability assessment	AVA_VAN	1	2	2	3	4	5	5

Table 1: Evaluation assurance level summary"

Evaluation assurance level 1 (EAL1) - functionally tested (chapter 8.3)
"Objectives
EAL1 is applicable where some confidence in correct operation is required, but the threats to security are not viewed as serious. It will be of value where independent assurance is required to support the contention that due care has been exercised with respect to the protection of personal or similar information.

EAL1 requires only a limited security target. It is sufficient to simply state the SFRs that the TOE must meet, rather than deriving them from threats, OSPs and assumptions through security objectives.

EAL1 provides an evaluation of the TOE as made available to the customer, including independent testing against a specification, and an examination of the guidance documentation provided. It is intended that an EAL1 evaluation could be successfully conducted without assistance from the developer of the TOE, and for minimal outlay.
An evaluation at this level should provide evidence that the TOE functions in a manner consistent with its documentation."

Evaluation assurance level 2 (EAL2) - structurally tested (chapter 8.4)
"Objectives
EAL2 requires the co-operation of the developer in terms of the delivery of design information and test results, but should not demand more effort on the part of the developer than is consistent with good commercial practise. As such it should not require a substantially increased investment of cost or time.

EAL2 is therefore applicable in those circumstances where developers or users require a low to moderate level of independently assured security in the absence of ready availability of the complete development record. Such a situation may arise when securing legacy systems, or where access to the developer may be limited."

Evaluation assurance level 3 (EAL3) - methodically tested and checked (chapter 8.5)
 "Objectives

EAL3 permits a conscientious developer to gain maximum assurance from positive security engineering at the design stage without substantial alteration of existing sound development practises.

EAL3 is applicable in those circumstances where developers or users require a moderate level of independently assured security, and require a thorough investigation of the TOE and its development without substantial re-engineering."

Evaluation assurance level 4 (EAL4) - methodically designed, tested, and reviewed (chapter 8.6)
 "Objectives

EAL4 permits a developer to gain maximum assurance from positive security engineering based on good commercial development practises which, though rigorous, do not require substantial specialist knowledge, skills, and other resources. EAL4 is the highest level at which it is likely to be economically feasible to retrofit to an existing product line.

EAL4 is therefore applicable in those circumstances where developers or users require a moderate to high level of independently assured security in conventional commodity TOEs and are prepared to incur additional security-specific engineering costs."

Evaluation assurance level 5 (EAL5) - semiformally designed and tested (chapter 8.7)
"Objectives
EAL5 permits a developer to gain maximum assurance from security engineering based upon rigorous commercial development practises supported by moderate application of specialist security engineering techniques. Such a TOE will probably be designed and developed with the intent of achieving EAL5 assurance. It is likely that the additional costs attributable to the EAL5 requirements, relative to rigorous development without the application of specialised techniques, will not be large.

EAL5 is therefore applicable in those circumstances where developers or users require a high level of independently assured security in a planned development and require a rigorous development approach without incurring unreasonable costs attributable to specialist security engineering techniques."

Evaluation assurance level 6 (EAL6) - semiformally verified design and tested (chapter 8.8)

"Objectives

EAL6 permits developers to gain high assurance from application of security engineering techniques to a rigorous development environment in order to produce a premium TOE for protecting high value assets against significant risks.
EAL6 is therefore applicable to the development of security TOEs for application in high risk situations where the value of the protected assets justifies the additional costs."

Evaluation assurance level 7 (EAL7) - formally verified design and tested (chapter 8.9)
 "Objectives

EAL7 is applicable to the development of security TOEs for application in extremely high risk situations and/or where the high value of the assets justifies the higher costs. Practical application of EAL7 is currently limited to TOEs with tightly focused security functionality that is amenable to extensive formal analysis."

Class AVA: Vulnerability assessment (chapter 16)
"The AVA: Vulnerability assessment class addresses the possibility of exploitable vulnerabilities introduced in the development or the operation of the TOE."

Vulnerability analysis (AVA_VAN) (chapter 16.1)
"Objectives
Vulnerability analysis is an assessment to determine whether potential vulnerabilities identified, during the evaluation of the development and anticipated operation of the TOE or by other methods (e.g. by flaw hypotheses or quantitative or statistical analysis of the security behaviour of the underlying security mechanisms), could allow attackers to violate the SFRs.

Vulnerability analysis deals with the threats that an attacker will be able to discover flaws that will allow unauthorised access to data and functionality, allow the ability to interfere with or alter the TSF, or interfere with the authorised capabilities of other users."

This page is intentionally left blank

D Annexes

List of annexes of this certification report

Annex A: Security Target provided within a separate document.
Annex B: Evaluation results regarding development and production environment

This page is intentionally left blank.

Annex B of Certification Report BSI-DSZ-CC-0810-V2-2014

Evaluation results regarding development and production environment

The IT product NXP Secure Smart Card Controller P60D024/016/012PVB/PVB(Y) with IC Dedicated Software (Target of Evaluation, TOE) has been evaluated at an approved evaluation facility using the Common Methodology for IT Security Evaluation (CEM), Version 3.1 extended by advice of the Certification Body for components beyond EAL 5 and guidance specific for the technology of the product for conformance to the Common Criteria for IT Security Evaluation (CC), Version 3.1.

As a result of the TOE certification, dated 4 April 2014, the following results regarding the development and production environment apply. The Common Criteria assurance requirements ALC - Life cycle support (i.e. ALC_CMC.5, ALC_CMS.5, ALC_DEL.1, ALC_DVS.2, ALC_FLR.1, ALC_LCD.1, ALC_TAT.3)
are fulfilled for the development and production sites of the TOE listed below:

Development site	Task within the evaluation
NXP Semiconductors Hamburg Business Unit Identification (BU ID) Stresemannallee 101 2569 Hamburg Germany	Development, Delivery and customer support
TSMC, Fab 2 and 5	
No. 121 Park Ave. III	
Hsinchu Science Park	
Hsinchu, Taiwan 300, R.O.C.	Mask data preparation
TSMC, Fab 7	
No. 6, Creation Rd. II	
Hsinchu Science Park	
Hsinchu, Taiwan 300, R.O.C.	Mask data preparation
TSMC, Fab 6 and Fab 14	
No. 1, Nan-Ke North Rd.	
Tainan Science Park	
Tainan, Taiwan 741, R.O.C.	Mask and wafer production
Chipbond Technology Corporation	
No. 3, Li-Hsin Rd. V	
Science Based Industrial Park	Bumping
Hsin-Chu City	
Taiwan, R.O.C.	Test Center and configuration of the Fabkey
NXP Semiconductors GmbH Hamburg	

Development site	Task within the evaluation
Test Center Europe - Hamburg (TCE-H) Stresemannallee 101 22569 Hamburg Germany	
Assembly Plant Bangkok 303 Moo 3 Chaengwattana Rd. Laksi, Bangkok 10210 Thailand	Test Center, Delivery and Module assembly
Assembly Plant Kaohsiung NXP Semiconductors Taiwan Ltd \#10, Jing 5th Road, N.E.P.Z, Kaohsiung 81170 Taiwan, R.O.C	Test Center and Module assembly
SMARTRAC Technology Ltd. 142 Moo 1 Hi-Tech Industrial Estate Tambon Ban Laean, Amphor Bang-Pa-In 13160 Ayutthaya Thailand	Inlay assembly
SMARTRAC Technology Wehnrath GmbH Gewerbeparkstr. 10 51580 Reichshof-Wehnrath Germany	Inlay assembly
HID Global Teoranta Paic Tionscail na Tulaigh Balle na hAbhann Co. Galway Ireland	Inlay assembly
NXP Semiconductors Austria GmbH Styria Business Unit Identification (BU ID) Mikron-Weg 1 8108 Gratkorn Austria	Document control
NedCard B.V. Bijsterhuizen 25-29 6604 LM Wijchen The Netherlands	Module assembly
NedCard (Shanghai) Microelectronics Co. Ltd. Standardized Plant Building \#8 No. 789 Puxing Road Caohejing Hi-Tech Park, EPZ 201114 Shanghai People's Republic of China	Module assembly

For the sites listed above, the requirements have been specifically applied in accordance with the Security Target [6]. The evaluators verified, that the threats, security objectives
and requirements for the TOE life cycle phases up to delivery (as stated in the Security Target [6] and [8]) are fulfilled by the procedures of these sites.

This page is intentionally left blank.

[^0]: 1 Act on the Federal Office for Information Security (BSI-Gesetz - BSIG) of 14 August 2009, Bundesgesetzblatt I p. 2821

[^1]: ${ }^{2}$ Act on the Federal Office for Information Security (BSI-Gesetz - BSIG) of 14 August 2009, Bundesgesetzblatt I p. 2821
 ${ }^{3}$ Ordinance on the Procedure for Issuance of a Certificate by the Federal Office for Information Security (BSI-Zertifizierungsverordnung, BSIZertV) of 07 July 1992, Bundesgesetzblatt I p. 1230

 4 Schedule of Cost for Official Procedures of the Bundesamt für Sicherheit in der Informationstechnik (BSI-Kostenverordnung, BSI-KostV) of 03 March 2005, Bundesgesetzblatt I p. 519

 5 Proclamation of the Bundesministerium des Innern of 12 February 2007 in the Bundesanzeiger dated 23 February 2007, p. 3730

[^2]: 6 Information Technology Security Evaluation Facility

[^3]: 7 NXP Semiconductors Germany GmbH
 Stresemannallee 101
 22529 Hamburg

[^4]: ${ }^{8}$ specifically

 - AIS 25, Version 8, Anwendung der CC auf Integrierte Schaltungen including JIL Document and CC Supporting Document
 - AIS 26, Version 9, Evaluationsmethodologie für in Hardware integrierte Schaltungen including JIL Document and CC Supporting Document
 - AIS 31, Version 3, Funktionalitätsklassen und Evaluationsmethodologie für physikalische Zufallszahlengeneratoren
 - AIS 32, Version 7, CC-Interpretationen im deutschen Zertifizierungsschema
 - AIS 34, Version 3, Evaluation Methodology for CC Assurance Classes for EAL5+ (CCv2.3 \& CCv3.1) and EAL6 (CCv3.1)
 - AIS 35, Version 1, Öffentliche Fassung des Security Targets (ST-Lite) including JIL Document and CC Supporting Document and CCRA policies
 - AIS 36, Version 4, Kompositionsevaluierung including JIL Document and CC Supporting Document
 - AIS 38, Version 2, Reuse of evaluation results

