
Groove Cryptographic Services
(GrooveMisc.dll 2.5.0.1774; cryptopp.dll 5.0.4.0)

Common Criteria
Security Target

Version 3.4

Jean E. Petty

August 22, 2003

iii

TABLE OF CONTENTS

SECTION PAGE

1 SECURITY TARGET INTRODUCTION 1

1.1 SECURITY TARGET IDENTIFICATION 1
1.2 SECURITY TARGET OVERVIEW 1
1.3 COMMON CRITERIA CONFORMANCE 1
1.4 RELATED DOCUMENTS 2

2 TOE DESCRIPTION 3

2.1 PRODUCT TYPE 3
2.2 GENERAL TOE FUNCTIONALITY 3

2.2.1 TSF, TSF Subsystems, and TSFI 4
2.2.2 GrooveMisc.dll (TSF-Subset) and its COM API 4
2.2.3 cryptopp.dll and its C++ API 5
2.2.4 Relationship Between the Two TSF Subsystems 5

2.3 CRYPTOGRAPHIC OPERATIONS 6
2.4 ENVIRONMENT SECURITY FUNCTIONAL REQUIREMENTS 7

3 SECURITY ENVIRONMENT 9

3.1 THREATS TO SECURITY 9
3.2 ASSUMPTIONS FOR THE IT ENVIRONMENT 9
3.3 THREATS TO THE SECURITY ENVIRONMENT 10

4 SECURITY OBJECTIVES 11

4.1 SECURITY OBJECTIVES FOR THE TOE 11
4.2 SECURITY OBJECTIVES FOR THE ENVIRONMENT 12

5 IT SECURITY REQUIREMENTS 13

5.1 TOE SECURITY FUNCTIONAL REQUIREMENTS 13
5.1.1 FCS – Cryptographic Support 13
5.1.2 FPT – Protection of the TOE Security Functions 17

5.2 SECURITY FUNCTIONAL REQUIREMENTS FOR THE ENVIRONMENT 18
5.2.1 FCS – Cryptographic Support 18
5.2.2 FDP – User Data Protection 18
5.2.3 FIA – Identification and Authentication 20
5.2.4 FMT – Security Management 20

5.3 STRENGTH OF FUNCTION REQUIREMENT 21
5.4 TOE SECURITY ASSURANCE REQUIREMENTS 22

6 TOE SUMMARY SPECIFICATION 23

6.1 TOE IT SECURITY FUNCTIONS 23
6.1.1 Key Generation 23
6.1.2 Cryptographic Operations 24
6.1.3 Self-Tests 25

6.2 ENVIRONMENTAL SECURITY FUNCTIONS 26
6.2.1 Cryptographic Key Destruction 26
6.2.2 Access Control 26
6.2.3 Data and Key Export 27
6.2.4 Data and Key Import 27
6.2.5 Identification and Authentication 27

iv

6.2.6 Security Management 28
6.3 STRENGTH OF FUNCTION REQUIREMENT 28
6.4 ASSURANCE MEASURES 28

7 PP CLAIMS 30

8 RATIONALE 31

8.1 SECURITY OBJECTIVES RATIONALE 31
8.1.1 All Assumptions and Threats Addressed 31
8.1.2 All Objectives Necessary 34

8.2 SECURITY REQUIREMENTS RATIONALE 36
8.2.1 All Objectives Met by Security Requirements 36
8.2.2 All Functional Components Necessary 38
8.2.3 Satisfaction of Dependencies 40
8.2.4 Assurance Rationale 42

8.3 TOE SUMMARY SPECIFICATION RATIONALE 42
8.3.1 All TOE Security Functional Requirements Satisfied 42
8.3.2 All Security Functional Requirements for the Environment Satisfied 43
8.3.3 All TOE and Environment Summary Specification (TSS) Functions Necessary 45
8.3.4 Strength of Function Rationale 46
8.3.5 Rationale for Explicitly Stated Requirement 46
8.3.6 Assurance Measures Rationale 47

8.4 PP CLAIMS RATIONALE 48

9 ACRONYMS 49

10 REFERENCES 50

v

TABLE OF FIGURES AND TABLES

TABLE/FIGURE PAGE
INTERPRETATIONS.. VI
NIAP INTERPRETATIONS ... VI
INTERNATIONAL INTERPRETATIONS ... VII
REVISION HISTORY ..VIII
FIGURE 1. TOE/TSF DIAGRAM..3
TABLE 3.1 – THREATS TO SECURITY ...9
TABLE 3.2 –ASSUMPTIONS FOR THE IT ENVIRONMENT ..9
TABLE 3.3 –THREATS TO THE IT SECURITY ENVIRONMENT ...10
TABLE 4.1 – SECURITY OBJECTIVES FOR THE TOE...11
TABLE 4.2 – SECURITY OBJECTIVES FOR THE ENVIRONMENT ..12
TABLE 5.1 – TOE SECURITY FUNCTIONAL REQUIREMENTS ...13
TABLE 5.2 – SECURITY FUNCTIONAL REQUIREMENTS FOR THE ENVIRONMENT ..18
TABLE 5.3 - ASSURANCE COMPONENTS ..22
TABLE 6.1 – ASSURANCE EVALUATION EVIDENCE...29
TABLE 8.1 – ALL ASSUMPTIONS AND THREATS TO SECURITY COUNTERED BY OBJECTIVES...........................32
TABLE 8.2 – ALL IT SECURITY OBJECTIVES NECESSARY ...34
TABLE 8.3– MAPPING OF IT SECURITY OBJECTIVES TO REQUIREMENTS ...36
TABLE 8.4– MAPPING OF FUNCTIONAL REQUIREMENTS TO IT SECURITY OBJECTIVES39
TABLE 8.5 – FUNCTIONAL REQUIREMENTS DEPENDENCIES ...40
TABLE 8.6 – MAPPING OF FUNCTIONAL REQUIREMENTS TO TOE SUMMARY SPECIFICATION.........................42
TABLE 8.7 – MAPPING OF FUNCTIONAL REQUIREMENTS TO IT ENVIRONMENT SUMMARY SPECIFICATION ...44
TABLE 8.8 – MAPPING OF TOE AND ENVIRONMENT SUMMARY SPECIFICATION TO FUNCTIONAL

REQUIREMENTS..46
TABLE 8.9 – ASSURANCE EVALUATION EVIDENCE...47

vi

Interpretations

This ST conforms with the NIAP and International interpretations listed in the following two tables.

 NIAP Interpretations

Title
I-0347 Including Sensitive Information In Audit Records
I-0350 Clarification Of Resources/Objects For Residual Information Protection
I-0352 Rules Governing Binding Should Be Specifiable
I-0375 Elements Requiring Authentication Mechanism
I-0381 Relationship Between FPT_PHP And FMT_MOF
I-0389 Recovery To A Known State
I-0393 A Completely Evaluated ST Is Not Required When TOE Evaluation Starts
I-0395 Security Attributes Include Attributes Of Information And Resources
I-0405 American English Is An Acceptable Refinement
I-0406 Automated Or Manual Recovery Is Acceptable
I-0407 Empty Selections Or Assignments
I-0409 Other Properties In FMT_MSA.3 Should Be Specified By Assignment
I-0410 Auditing Of Subject Identity For Unsuccessful Logins
I-0411 Guidance Includes AGD_ADM, AGD_USR, ADO, And ALC_FLR
I-0412 Configuration Items In The Absence Of Configuration Management
I-0414 Site-Configurable Prevention Of Audit Loss
I-0415 User Attributes To Be Bound Should Be Specified
I-0416 Association Of Access Control Attributes With Subjects And Objects
I-0417 Association Of Information Flow Attributes W/Subjects And Information
I- 0418 Evaluation Of The TOE Summary Specification: Part 1 Vs Part 3
I-0420 Attribute Inheritance/Modification Rules Need To Be Included In Policy
I-0421 Application Notes In Protection Profiles Are Informative Only
I-0422 Clarification Of ``Audit Records''
I-0423 Some Modifications To The Audit Trail Are Authorized
I-0424 FPT_SEP.2 And FPT_SEP.3 Are Not Hierarchical
I-0425 Settable Failure Limits Are Permitted
I-0426 Content Of PP Claims Rationale
I-0427 Identification Of Standards
I-0429 Selecting One Or More
I-0459 CM Systems May Have Varying Degrees Of Rigor And Function

vii

International Interpretations

Title
003 Unique identification of configuration items in the configuration list
004 ACM_SCP.*.1C requirements unclear

006 Virtual machine description
008 Augmented and Conformant overlap

009 Definition of Counter
013 Multiple SOF claims for multiple domains in a single TOE

016 Objective for ADO_DEL
019 Assurance Iterations
024 COTS product in TOE providing security

025 Level of detail required for hardware descriptions
027 Events and actions

031 Obvious vulnerabilities

032 Strength of Function Analysis in ASE_TSS
033 CC use of "Check"
037 ACM on Product or TOE?
043 Meaning of "clearly stated" in APE/ASE_OBJ.1
049 Threats met by environment
051 Use of documentation without C & P elements.
055 Incorrect Component referenced in Part 2 Annexes, FPT_RCV
058 Confusion over refinement
064 Apparent higher standard for explicitly stated requirements
065 No component to call out security function management
067 Application notes missing
069 Informal Security Policy Model
074 Duplicate informative text for ATE_COV.2-3 and ATE_DPT.1-3
075 Duplicate informative text for different work units
084 Aspects of objectives in TOE and environment
085 SOF Claims additional to the overall claim
095 SCP Dependency in ACM_CAP
098 Limitation of refinement
116 Indistinguishable work units for ADO_DEL
120 Sampling of process expectations unclear
127 Work unit not at the right place
128 Coverage of the delivery procedures
133 Consistency analysis in AVA_MSU.2
138 Iteration and narrowing of scope

viii

Revision History

Date Version Description
December 6, 2001 0.1 Groove Snapshot Draft Document

December 14, 2001 0.2 Groove Initial Draft

January 4 2002 0.3 Groove Pre-Release Draft

January 9, 2002 1.0 Groove Release Draft

April 22, 2002 1.1 Groove version for CygnaCom

September 25, 2002 2.0 CygnaCom initial version

September 30, 2002 2.1 CygnaCom draft version

October 4, 2002 2.2 Name change and CygnaCom version for initial submission to
evaluator

October 11, 2002 2.3 Completion of rationale in Section 8

December 4, 2002 2.4 Responded to EORs.

December 7, 2002 2.5 Modified TOE environment to include import and export
functional requirements. Added detailed mappings of
dependencies for iterations of FCS_COP.1.

December 23, 2002 2.6 Updated ST to respond to EORs.

January 6, 2003 2.7 Made minor updates to fix typos and consistency. Deleted key
generation of GDSA algorithm.

January 9, 2003 2.8 Made minor updates to fix typos and redefined some FCS_COP
iterations to take out key size ranges.

April 8, 2003 2.9 Made modifications in response to EORs: EOR_ST_01 and
EOR_ST_02

April 9, 2003 3.0 Made modifications to respond to minor validator corrections

April 16, 2003 3.09 Made minor modifications to respond to validator comments

April 29, 2003 3.1 Made minor modifications to respond to validator comments

August 11, 2003 3.2 Modified the ST to be consistent with the new TOE definition
presented in evaluation evidence.

August 15, 2003 3.3 Added a table of interpretations, deleted the text of the
assurance requirements, and made minor corrections to text in
Sections 2, 5, and 6.

August 22, 2003 3.4 OE.DESTRUCT was modified to refer to the environment
instead of the TOE.

1

1 SECURITY TARGET INTRODUCTION

1.1 SECURITY TARGET IDENTIFICATION

TOE Identification: Groove Cryptographic Services (GrooveMisc.dll 2.5.0.1774; cryptopp.dll 5.0.4.0)
ST Identification: Groove Cryptographic Services (GrooveMisc.dll 2.5.0.1774; cryptopp.dll 5.0.4.0)
Common Criteria Security Target.
ST Version Number: Version 3.4
ST Author: Jean Petty, CygnaCom Solutions, Inc.
Assurance level: EAL2, augmented.
Registration: <To be filled in upon registration>
Keywords: PC, Cryptographic Module, Dynamic Link Library, Collaboration Software.

1.2 SECURITY TARGET OVERVIEW

The Groove software TOE (target of evaluation) consists of software (binary executable code). It
provides cryptographic services, and certain non-cryptographic support services, for use by
applications, such as Groove collaborative computing software, in performing a variety of
operations on PCs running either the Windows 2000, the Windows NT, or the Windows XP
operating system. It supports various cryptographic security functions such as:

� Generate symmetric keys for use with various cryptographic algorithms and security
functions.

� Generate asymmetric keys for use with various public key cryptographic algorithms.
� Perform various symmetric and asymmetric encryption, digital signature, and key agreement

operations using the generated symmetric and asymmetric keys.
� Perform secure hash operations using SHA-1.
� Generate and verify message authentication codes using the FIPS-approved HMAC

algorithm.
CygnaCom Solutions, an Entrust Company, developed this ST under contract with Groove. The ST
revision history is provided in the front matter of this document.

1.3 COMMON CRITERIA CONFORMANCE

This ST has been built with Common Criteria (CC) Version 2.1 (ISO/IEC 15408 Evaluation Criteria
for Information Technology Security; Part 1: Introduction and general model, Part 2: Security
functional requirements, and Part 3: Security assurance requirements).
This ST is CC Version 2.1, Part 2 extended, and Part 3 conformant, at Evaluation Assurance Level
2 with Augmentation. EAL2 was augmented with ADV_SPM.1, Informal TOE security policy model.

2

This ST conforms with the NIAP and International interpretations listed in the front matter of this
document.

1.4 RELATED DOCUMENTS

� FIPS 140-2, Security Requirements for Cryptographic Modules, 25 May 2002
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf.

� National Institute of Standards and Technology, Derived Test Requirements for FIPS PUB
140-2, Security Requirements for Cryptographic Modules, Draft, November 15, 2001.

� FIPS 197 Advanced Encryption Standard (AES)
� FIPS 46-3 Data Encryption Standard (DES)

� National Institute of Standards and Technology, Digital Signature Standard (DSS), FIPS
186-2, October 5, 2001.

� American Bankers Association, Digital Signatures Using Reversible Public Key
Cryptography for the Financial Services Industry (rDSA), ANSI X9.31-1998.

� American Bankers Association, Public Key Cryptography for the Financial Services Industry:
The Elliptic Curve Digital Signature Algorithm (ECDSA), ANSI X9.62-1998.

� National Institute of Standards and Technology, Secure Hash Standard, FIPS 180-1, April
17, 1995.

� National Institute of Standards and Technology, Keyed-Hash Message Authentication Code
(HMAC) FIPS PUB 198, issued March 6, 2002.

� IEEE Standard Specifications for Public Key Cryptography, IEEE 1363-2000.

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

3

2 TOE DESCRIPTION

2.1 PRODUCT TYPE

The TOE is software that is loaded on a PC running under the Microsoft Windows 2000, the
Windows NT, or the Windows XP operating systems. It provides cryptographic services, and
certain non-cryptographic support services, for use by applications (particularly Groove software) in
performing a variety of operations.

2.2 GENERAL TOE FUNCTIONALITY

The Groove software TOE (target of evaluation) consists of software (binary executable code). It
provides cryptographic services, and certain non-cryptographic support services, for use by
applications in performing a variety of operations such as:

� Generate symmetric keys for use with various cryptographic algorithms and security
functions.

� Generate asymmetric keys for use with various public key cryptographic algorithms.
� Perform various symmetric and asymmetric encryption, digital signature, and key agreement

operations using the generated symmetric and asymmetric keys.
� Perform secure hash operations using SHA-1.
� Generate and verify message authentication codes using the FIPS-approved HMAC

algorithm.
A diagram of the Groove TOE and the environment in which it exists is provided in Figure 1 and is
explained in the text following.

Operating System
(Windows)

Apps not
Using TOE

Outside World (Internet)

Applications Using TOE
[e.g., Groove Products (Workspace, EMS, ERS, EIS)]

TOE

TSF-Subset
of GrooveMisc.dll

GrooveMisc.dll

Non-TSF-Subset
of GrooveMisc.dll

cryptopp.dll

Figure 1. TOE/TSF Diagram

4

In Figure 1, the boxes indicate software functional components, which provide and consume
services amongst one another. The lower-level components in Figure 1 represent providers of
services, and higher-level components represent consumers of those services. Services interfaces
between producers and consumers are indicated by heavy horizontal lines. In general, these
interfaces can be APIs (Application Programming Interfaces), or IPCs (Inter-Process
Communications).
As shown in Figure 1, the TOE consists of two DLLs (dynamically linked libraries). These DLLs are
known as GrooveMisc.dll and cryptopp.dll. The two software DLLs represent the physical
boundaries of the TOE. The TOE logical boundaries are depicted in Figure 1 and are described in
the following subsections.
The operational environment in which the TOE exists (Microsoft Windows operating system) must
provide identification, authentication and access control services sufficient to protect the TOE
software from compromise by users.

2.2.1 TSF, TSF Subsystems, and TSFI

The TSF (TOE Security Functions) consists of two subsystems. The two subsystems comprising
the TSF are indicated by the shaded portion of Figure 1. The other components of Figure 1 (the
non-shaded portions of Figure 1) do not form part of the TSF.
The two subsystems of the TSF are:

� (TSF-Subset of) GrooveMisc.dll — A certain subset of the GrooveMisc.dll DLL (shaded in
Figure 1), including the interface to it. Note: Where the context ensures that no confusion is
likely to result, the qualifying phrase “TSF-Subset of” may be omitted, for simplicity.

� The cryptopp.dll DLL (shaded in Figure 1), including its interface.
As shown in Figure 1, the services of the TSF are accessed by consuming applications via
interfaces. These interfaces comprise the TSFI (TSF Interface). Just as the TSF consists of two
subsystems, so also the TSFI is composed of two parts, corresponding to the two subsystems of
the TSF. One part of the TSFI is the interface accessing the services of the TSF-subset of
GrooveMisc.dll. The other part of the TSFI is the interface accessing the services of cryptopp.dll.
These two parts of the TSFI are depicted in Figure 1 by the two heaviest horizontal lines, on top of
the TSF-subset of GrooveMisc.dll and on top of cryptopp.dll, respectively.
The interfaces of the TSFI are APIs. The binary code implementing these APIs is implemented by
exported execution entry points resident in their respective DLLs (they are not separable
mechanisms). Applications accessing these APIs must respect the calling conventions associated
with these API entry points. These calling conventions (datatypes representing input/output
parameters, their encodings, their positions in the computer’s execution stack, the location of the
associated entry points, etc.) are expressed in the COM and C++ languages.
The interfaces in Figure 1 that access services in the non-TSF subset of GrooveMisc.dll, and the
interfaces accessing services outside the TOE, are represented with light-heavy lines, and they do
not form part of the TSFI.

2.2.2 GrooveMisc.dll (TSF-Subset) and its COM API

The GrooveMisc.dll DLL consists partially of cryptographic functionality, and partially of non-
cryptographic functionality. The cryptographic functionality of GrooveMisc.dll (shaded in Figure 1)

5

is a subset of the TSF. The non-cryptographic functionality (non-shaded in Figure 1) is not a subset
of the TSF (though it is a subset of the TOE).
The TSFI on GrooveMisc.dll consists of APIs expressed in the COM (Common Object Model)
interface definition language. COM is considered a “high-level language”, which has the capability
to specify interfaces only. COM contains no low-level programming constructs, such as arithmetic
expressions or execution flow-control operations.
Note that, since the source-code of cryptopp.dll is open-source (see Sec. 2.4.4), it would have been
possible to implement all the functionality of the Groove TOE directly in GrooveMisc.dll itself,
without splitting off part of the functionality into cryptopp.dll. However, cryptopp.dll is FIPS-validated
(see Sec. 2.4.2), while GrooveMisc.dll is not. It is the desire to import the assurance derived from
the FIPS-validation of cryptopp.dll into Groove that is the reason for including cryptopp.dll in the
Groove TOE.
For the specific cryptographic functionality supported by GrooveMisc.dll, see Sec. 2.5, below.

2.2.3 cryptopp.dll and its C++ API

The cryptopp.dll DLL consists wholly of cryptographic functionality. So it is a subset of the TSF
(shaded in Figure 1).
The TSFI on cryptopp.dll consists of APIs expressed in the C++ programming language. C++ is
considered a “low-level” language. It has the capability to specify interfaces, and it also supports a
complete suite of constructs typically associated with a full-fledged programming language.
The cryptopp.dll DLL contains a set of FIPS-approved cryptographic functionality. It has been
validated by NIST (under the title “Crypto++ Library Version 5.0.4”) and found to be in conformance
with FIPS PUB 140-2 (Security Requirements for Cryptographic Modules) Level 1. For details, see
the FIPS evaluation documentation for cryptopp.dll, submitted as evidence in
cryptopp_august042003.zip.
The cryptopp.dll DLL also runs a suite of self-tests during initial start-up, per FIPS specification.
For the specific cryptographic functionality supported by cryptopp.dll, see Sec. 2.5, below.

2.2.4 Relationship Between the Two TSF Subsystems

The cryptopp.dll subsystem is considered to be a minor component of the TSF, subordinate to the
major GrooveMisc.dll subsystem, for the reasons explained in this subsection.
In the Groove programming environment, applications are required (by Groove programming
convention) to access cryptographic services only via the “high-level” COM APIs on the
GrooveMisc.dll TSFI, not via the “low-level” C++ APIs on cryptopp.dll. To implement this
convention, some of the COM APIs of the GrooveMisc.dll TSFI act as “wrappers” for the C++ APIs
of cryptopp.dll. All of the C++ APIs of cryptopp.dll are “wrapped” (i.e., encapsulated) in this manner.
The internal implementation of these high-level “wrapper” COM APIs is to invoke (“wrap”) a
corresponding low-level C++ API on cryptopp.dll. In this manner, COM APIs on the GrooveMisc.dll
can be used to indirectly access services provided by cryptopp.dll. This is indicated in Figure 1 by
the dotted arrow.
The wrapping strategy just described is necessary to implement Groove’s programming convention.
Nevertheless, this is only a programming convention. There is no technological enforcement of the

6

convention. That is, applications can access the C++ APIs of cryptopp.dll if they choose to do so
(thereby disregarding the convention). Therefore the C++ APIs on cryptopp.dll must be considered
as “external” TSF interfaces for the purposes of this CC evaluation.
The code implementing the wrapping strategy does not modify cryptographic data passing between
the COM API TSFI and the underlying C++ API. (Cryptographic data includes cryptographic keys,
hash values, message authentication codes, digital signatures, and encrypted or decrypted data.)
COM APIs on the GrooveMisc.dll TSFI are also used to access certain cryptographic services
which are implemented directly in GrooveMisc.dll itself. These are “non-wrapper” COM APIs (they
do not invoke services in cryptopp.dll).

2.3 CRYPTOGRAPHIC OPERATIONS

The TSF provides Groove cryptographic support by performing the cryptographic operations listed
below. FIPS-approved operations are denoted with relevant FIPS publication numbers, and other
(non-FIPS) operations are denoted by their relevant specification documents. The operations listed
are implemented in the TSF subsystems (GrooveMisc.dll and/or cryptopp.dll), as designated in
each subsection below. Those subsystem designations are indicated as:

� Subsystem: GrooveMisc.dll — The operation is implemented entirely in GrooveMisc.dll
(cryptopp.dll is not involved). It is externally accessible via a GrooveMisc.dll COM API.
(Note: Some GrooveMisc.dll COM APIs “wrap” functionality implemented in cryptopp.dll, as
explained in Sec. 2.4.3)

� Subsystem: cryptopp.dll — The operation is implemented in cryptopp.dll. It is externally
accessible via a cryptopp.dll C++ API. (Note: The higher-level COM APIs are the
preferred/intended interfaces.)

TOE cryptographic operations include:
� DES — Data Encryption Standard Key Generation - The TOE generates 56-bit DES keys

(for backward compatibility purposes) as specified in FIPS Publication 46-3. Subsystem:
GrooveMisc.dll.

� DES-ECB — DES Electronic Code Book Encryption and Decryption - The TOE
performs DES encryption and decryption (for backward compatibility purposes) as specified
in FIPS Publication 46-3. Subsystem: GrooveMisc.dll.

� AES — Advanced Encryption Standard Key Generation - The TOE generates 128, 192,
and 256-bit AES keys as specified in FIPS Publication 197. Subsystems: cryptopp.dll.

� AES-CTR — AES - Counter Mode Encryption and Decryption - The TOE performs AES
encryption and decryption as specified in FIPS Publication 197. Subsystems: cryptopp.dll.

� DH — Diffie-Hellman Key Generation - The TOE generates Diffie-Hellman public and
private keys of any valid value between 512 bits to 64K bits as defined by the referenced
standard IEEE 1363-20001. Subsystem: GrooveMisc.dll.

� DH — Diffie-Hellman Key Agreement - The TOE performs Diffie-Hellman key agreement
as specified in IEEE 1363-2000. Subsystems: cryptopp.dll.

1 IEEE 1363-2000 is the IEEE Standard Specifications for Public Key Cryptography.

7

� DLIES — Discrete Logarithm Integrated Encryption Scheme Encryption and
Decryption - The TOE performs DLIES encryption and decryption as specified in IEEE
P1363a/D112. DLIES encryption and decryption uses Diffie-Hellman public and private
keys, generating them as specified in IEEE 1363-2000. Key lengths of 512 to 64K bits are
supported. Subsystem: GrooveMisc.dll.

� RSA — Key Generation - The TOE generates RSA public and private keys of any valid
value between 512 bits to 64K bits as defined by the referenced standard IEEE 1363-2000.
Subsystems: cryptopp.dll.

� RSA — Encryption and Decryption - The TOE performs RSA encryption and decryption
as specified in IEEE 1363-2000. Subsystems: cryptopp.dll.

� RSA — Signature Generation and Verification - The TOE performs RSA signature
generation and verification as specified in IEEE 1363-2000. Subsystems: cryptopp.dll.

� GDSA — Generalized DSA Signature Generation and Verification - The TOE performs
GDSA signature generation and verification as specified in the IEEE 1363-2000. GDSA is
exactly like DSA except DSA has restrictions on the lower limit for key lengths where 1024 is
the minimum key length. GDSA does not have this restriction. GDSA signature generation
and verification uses Diffie-Hellman keys as specified in IEEE 1363-2000. Valid key lengths
of 512 to 64K bits are supported. Subsystem: GrooveMisc.dll.

� ESIGN — Key Generation - The TOE generates ESIGN public and private keys of any valid
value between 512 bits to 64K bits as defined by the referenced standard IEEE
P1363a/D11. Subsystem: GrooveMisc.dll.

� ESIGN — Signature Generation and Verification - The TOE performs ESIGN signature
generation and verification as specified IEEE P1363a/D11. Subsystem: GrooveMisc.dll.

� SHA1 — Secure Hash Algorithm - The TOE performs SHA1 hash operations as specified
in FIPS Publication 180-1. Subsystems: cryptopp.dll.

� HMAC-SHA1 — Keyed-Hashing for Message Authentication used with SHA1 - The
TOE performs HMAC-SHA1 keyed hash operations as specified in FIPS Publication 198.
Key lengths of 0 to 0xffffffff (4294967295) bytes are supported. Subsystems: cryptopp.dll.

� DefaultSecureRandom — FIPS-Approved Random Number Generation - The TOE
performs random number generation as specified in ANSI X9.31. Subsystems: cryptopp.dll.

� Crypto Module Integrity Test - The TOE runs a suite of self-tests during initial start-up to
verify the integrity of the cryptopp.dll DLL. The self-tests consist of tests specified in FIPS
Publication 140-2 for level 1 cryptographic modules. The integrity of the GrooveMisc.dll DLL
is not claimed to be checked; however, the trigger for the cryptopp.dll self-test is exposed by
the COM API of GrooveMisc.dll. Subsystems: cryptopp.dll.

2.4 ENVIRONMENT SECURITY FUNCTIONAL REQUIREMENTS

The IT environment must provide the following security functional requirements:
� Cryptographic key destruction

2 IEEE P1363a/D11 is Draft 11 the Proposed IEEE Standard Specifications for Public Key
Cryptography: Additional Techniques.

8

� Identification and authentication
� User data protection
� Security management

All of the TOE security functions (TSF) and security functional requirements for the IT environment
are provided by the platform hardware and operating system software on which the TOE executes.
The platform has the following hardware requirements:

� Intel® Pentium® processor, 400 MHz or higher
� 64 MB RAM (with 32 MB RAM available for Groove)
� 100 MB free disk space, with additional space required for your data.
� Display resolution 800 x 600, 15-bit (32,768) color minimum

The software (operating system) can be any of the following:
� Microsoft Windows 2000
� Microsoft Windows NT version 4.0 with Service Pack 5 or later
� Microsoft Windows XP

9

3 SECURITY ENVIRONMENT

This section identifies the following:
� Threats to Security
� Assumptions for the IT environment
� Threats to the Security Environment

3.1 THREATS TO SECURITY

Table 3.1 lists the threats to security.

Table 3.1 – Threats to Security

Threat Name Threat Description
1 T.HACK_CRYPTO Cryptographic algorithms may be incorrectly implemented or may operate

incorrectly, allowing an unauthorised individual or user to decipher keys or
data and thereby gain unauthorised access to data.

2 T.MALFUNCTION The TOE may enter an unsecure state at startup due to a malfunction.

3.2 ASSUMPTIONS FOR THE IT ENVIRONMENT

Table 3.2 lists the secure usage assumptions for the IT environment.

Table 3.2 –Assumptions for the IT Environment

Assumption Name Assumption Description
1 AE.OS It is assumed that the TOE is installed on a PC running

Microsoft Window 2000, Windows NT version 4.0 with Service
Pack 5 or later, or Windows XP.

2 AE.TRUSTED_ADMIN It is assumed that the administrator, who is responsible for
configuring the operating system, is a trusted user and that the
administrator will properly install and configure the TOE.

10

3.3 THREATS TO THE SECURITY ENVIRONMENT

Table 3.3 lists the threats to the IT security environment.

Table 3.3 –Threats to the IT Security Environment

Threat Name Threat Description
1 TE.ATTACK An undetected compromise of the TOE assets may occur as a result of

an attacker (whether an insider or outsider) attempting to perform
actions that the individual is not authorised to perform.

2 TE.BYPASS An unauthorised individual or user may tamper with security attributes
or other data in order to bypass OS security functions and gain
unauthorised access to TOE assets.

3 TE.CRYPTO_DES Incorrect cryptographic key destruction may cause an inadvertent
disclosure of sensitive information.

4 TE.EXPORT A user or an attacker may export data to an unsecure location or may
export corrupted data, causing the data exported to be added to or
substituted for original data and/or to reveal secrets or causing
exported data to be erroneous and unusable.

5 TE.IMPERSON An unauthorised individual may impersonate an authorised user of the
OS and thereby gain access to TOE data, keys, and operations.

6 TE.IMPORT A user or attacker may import data or keys from an unsecure location
or data with errors, causing key/data ownership and authorisation to be
uncertain or erroneous and/or the system to malfunction or operate in
an unsecure manner.

7 TE.MODIFY An attacker may modify OS or user data, e.g., file permissions, in order
to gain access to the TOE and its assets.

8 TE.OBJECT_INIT An attacker may gain unauthorised access to an object upon its
creation if the security attributes are not assigned to the object or an
unauthorised individual can assign the security attributes upon object
creation.

9 TE.ROLE A user may assume a more privileged role than permitted and use the
enhanced privilege to take unauthorised actions.

10 TE.SECURE_ATT A user may supply unsecure values for the security attributes of an
object and gain unauthorised access to the object.

11

4 SECURITY OBJECTIVES

4.1 SECURITY OBJECTIVES FOR THE TOE

Table 4.1 lists the security objectives for the TOE.

Table 4.1 – Security Objectives for the TOE

Objective Name Objective Description
1 O.ALGORITHMS The TOE must implement cryptographic algorithms according to

specified standards and perform cryptographic operations in
accordance with specified algorithms using cryptographic keys
of a specified size.

2 O.SELF_TEST The TOE must perform self-tests at startup to ensure correct
functioning of TOE operations.

12

4.2 SECURITY OBJECTIVES FOR THE ENVIRONMENT

Table 4.2 lists security objectives for the environment.

Table 4.2 – Security Objectives for the Environment

Objective Name Objective Description
1 OE.DAC The security environment shall control and restrict user access

to the TOE assets in accordance with a specified access control
policy.

2 OE.DESTRUCT The security environment must perform cryptographic key
destruction in accordance with FIPS Publication 140-2 key
destruction requirements.

3 OE.EXPORT When data are exported outside the TOE, the security
environment shall ensure that the data is exported to an
authenticated user and location according to the operating
system access control rules.

4 OE.I&A The security environment shall uniquely identify all users and
shall authenticate the claimed identity before granting a user
access to the TOE facilities.

5 OE.IMPORT When data are being imported into the TOE, the security
environment shall ensure that the data is from authenticated
user and location according to the operating system access
control rules.

6 OE.INIT_SECURE The security environment shall provide valid default security
attributes when an object is initialized and shall allow only
authorised users to change default security attributes.

7 OE.LIMIT_ACTIONS The security environment shall restrict the actions a user may
perform before the TSF verifies the identity of the user.

8 OE.OS The security environment shall include a PC running Microsoft
Windows 2000, Windows NT or Windows XP.

9 OE.SECURE The security environment shall permit only secure values for
security attributes.

10 OE.SECURITY_MGT The security environment shall enforce access control to ensure
that only authorised users may change security attributes.

11 OE.SECURITY_ROLES The security environment shall maintain security-relevant roles
and association of users with those roles.

12 OE.TRUSTED_ADMIN The security environment shall provide policies and procedures
to ensure that the administrator is a trusted user and shall
provide functionality that enables the administrator to configure
the system in accordance with a specified TOE Security Policy
Model.

13

5 IT SECURITY REQUIREMENTS

5.1 TOE SECURITY FUNCTIONAL REQUIREMENTS

This section contains the security functional requirements (SFRs) for the TOE. The TOE SFRs are
Part 2 Extended. The SFRs are Part 2 Extended, because there are explicitly stated requirements
as well as requirements drawn from Part 2.
The definition of Part 2 extended is found in the CC Part 3, section 5.4, “Part 2 extended - A PP or
TOE is Part 2 extended if the functional requirements include functional components not in Part 2.
All TOE functional requirements in this ST are listed in Table 5.1, below. Part 2 extended
requirements are explicitly identified as “Part 2 extended.”

Table 5.1 – TOE Security Functional Requirements

No. Component Component Name Part 2 or Part 2 extended
1 FCS_CKM.1 Cryptographic key generation Part 2
2 FCS_COP.1 Cryptographic operation Part 2
3 FPT_INTTST.1 Crypto Module integrity test Part 2 extended

The following sections contain the functional components from the Common Criteria (CC) Part 2
with the operations completed and one explicitly stated requirement.
For the Part 2 functional requirements the standard CC text is in regular font; the text inserted by
the Security Target (ST) author is in italic font. Iterations of security functional requirements are
indicated by the addition of a semicolon followed by the number of the iteration to the component
identifier, e.g., FCS_CKM.1;1 and FCS_CKM.1;2 indicate two different iterations of FCS_CKM.1,
Cryptographic key generation. Within the component, a semicolon followed by the iteration number
is added to each of the requirements, e.g., iteration FCS_CKM.1;1 contains requirement
FCS_CKM1.1;1 and iteration FCS_CKM.1;2 contains requirement FCS_CKM1.1;2. Where
functional requirement apply to the TSF environment, defined in Section 5.2, functional
requirements are refined with the word environment in italics.

5.1.1 FCS – Cryptographic Support

FCS_CKM.1;1 Cryptographic key generation - RSA

Hierarchical to: No other components.

FCS_CKM.1.1;1 The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm RSA and specified cryptographic key
sizes any valid value between 512 bits to 64K bits as defined by the referenced
standard that meet the following: IEEE 1363-2000.

Dependencies: FCS_COP.1 Cryptographic operation, FCS_CKM.4 Cryptographic key
destruction, FMT_MSA.2 Secure security attributes

14

FCS_CKM.1;2 Cryptographic key generation – AES

Hierarchical to: No other components.

FCS_CKM.1.1;2 The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm Advanced Encryption Standard (AES) and
specified cryptographic key sizes 128, 192, 256 bit that meet the following: FIPS
PUB 197.

Dependencies: FCS_COP.1 Cryptographic operation, FCS_CKM.4 Cryptographic key
destruction, FMT_MSA.2 Secure security attributes

FCS_CKM.1;3 Cryptographic key generation – DES

Hierarchical to: No other components.

FCS_CKM.1.1;3 The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm Data Encryption Standard (DES) and
specified cryptographic key sizes 56 bits that meet the following: FIPS PUB 46-3.

Dependencies: FCS_COP.1 Cryptographic operation, FCS_CKM.4 Cryptographic key
destruction, FMT_MSA.2 Secure security attributes

FCS_CKM.1;4 Cryptographic key generation – DH

Hierarchical to: No other components.

FCS_CKM.1.1;4 The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm Diffie-Hellman and specified cryptographic
key sizes any valid value between 512 to 64K bits as defined by the referenced
standard that meet the following: IEEE 1363-2000.

Dependencies: FCS_COP.1 Cryptographic operation, FCS_CKM.4 Cryptographic key
destruction, FMT_MSA.2 Secure security attributes

FCS_CKM.1;5 Cryptographic key generation – ESIGN

Hierarchical to: No other components.

FCS_CKM.1.1;5 The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm ESIGN and specified cryptographic key
sizes any valid value between 512 bits to 64K bits as defined by the referenced
standard that meet the following: IEEE 1363a/D11.

Dependencies: FCS_COP.1 Cryptographic operation, FCS_CKM.4 Cryptographic key
destruction, FMT_MSA.2 Secure security attributes

FCS_COP.1;1 Cryptographic operation - RSA encrypt and decrypt

Hierarchical to: No other components.

15

FCS_COP.1.1;1 The TSF shall perform encryption and decryption in accordance with a specified
cryptographic algorithm RSA and cryptographic key sizes any valid value as
defined by the referenced standard that meets the following: IEEE 1363-2000.

Dependencies: FDP_ITC.1 Import of user data without security attributes, FCS_CKM.4
Cryptographic key destruction, FMT_MSA.2 Secure security attributes.

FCS_COP.1;2 Cryptographic operation - RSA signature and signature verification

Hierarchical to: No other components.

FCS_COP.1.1;2 The TSF shall perform signature generation and signature verification in
accordance with a specified cryptographic algorithm RSA and cryptographic key
sizes any valid value as defined by the referenced standard that meets the
following: IEEE 1363-2000.

Dependencies: FDP_ITC.1 Import of user data without security attributes, FCS_CKM.4
Cryptographic key destruction, FMT_MSA.2 Secure security attributes.

FCS_COP.1;3 Cryptographic operation - SHA-1

Hierarchical to: No other components.

FCS_COP.1.1;3 The TSF shall perform secure hash in accordance with a specified cryptographic
algorithm SHA-1 and cryptographic key sizes not applicable that meet the
following: FIPS 180-1.

Dependencies: FDP_ITC.1 Import of user data without security attributes, FCS_CKM.4
Cryptographic key destruction, FMT_MSA.2 Secure security attributes.

FCS_COP.1;4 Cryptographic operation - Keyed-Hashing for Message Authentication

Hierarchical to: No other components.

FCS_COP.1.1;4 The TSF shall perform keyed-hashing message authentication code (HMAC) in
accordance with a specified cryptographic algorithm SHA-1 and cryptographic key
sizes 160 bits that meet the following: FIPS PUB 198.

Dependencies: FDP_ITC.1 Import of user data without security attributes, FCS_CKM.4
Cryptographic key destruction, FMT_MSA.2 Secure security attributes.

FCS_COP.1;5 Cryptographic operation - DH Key agreement

Hierarchical to: No other components.

FCS_COP.1.1;5 The TSF shall perform key agreement in accordance with a specified
cryptographic algorithm Diffie-Hellman and cryptographic key sizes any valid
value as defined by the referenced standard that meets the following: IEEE 1363-
2000.

16

Dependencies: FDP_ITC.1 Import of user data without security attributes, FCS_CKM.4
Cryptographic key destruction, FMT_MSA.2 Secure security attributes.

FCS_COP.1;6 Cryptographic operation - DES-ECB encrypt and decrypt

Hierarchical to: No other components.

FCS_COP.1.1;6 The TSF shall perform encryption and decryption in accordance with a specified
cryptographic algorithm DES Electronic Code Book and cryptographic key size
56 bits that meet the following: FIPS PUB 46-3.

Dependencies: FDP_ITC.1 Import of user data without security attributes, FCS_CKM.4
Cryptographic key destruction, FMT_MSA.2 Secure security attributes.

FCS_COP.1;7 Cryptographic operation - AES-CTR encrypt and decrypt

Hierarchical to: No other components.

FCS_COP.1.1;7 The TSF shall perform encryption and decryption in accordance with a specified
cryptographic algorithm AES Counter Mode and cryptographic key sizes 128, 192,
256 bits that meet the following: FIPS PUB 197.

Dependencies: FDP_ITC.1 Import of user data without security attributes, FCS_CKM.4
Cryptographic key destruction, FMT_MSA.2 Secure security attributes.

FCS_COP.1;8 Cryptographic operation - GDSA signature and signature verification

Hierarchical to: No other components.

FCS_COP.1.1;8 The TSF shall perform signature generation and signature verification in
accordance with a specified cryptographic algorithm GDSA and cryptographic key
sizes any valid value as defined by the referenced standard that meets the
following: IEEE 1363-2000.

Dependencies: FDP_ITC.1 Import of user data without security attributes, FCS_CKM.4
Cryptographic key destruction, FMT_MSA.2 Secure security attributes.

FCS_COP.1;9 Cryptographic operation - DLIES encrypt and decrypt

Hierarchical to: No other components.

FCS_COP.1.1;9 The TSF shall perform encryption and decryption in accordance with a specified
cryptographic algorithm Discrete Logarithm Integrated Encryption Scheme
(DLIES) and cryptographic key sizes any valid value as defined by the referenced
standard that meets the following: IEEE 1363a/D11.

Dependencies: FDP_ITC.1 Import of user data without security attributes, FCS_CKM.4
Cryptographic key destruction, FMT_MSA.2 Secure security attributes.

17

FCS_COP.1;10 Cryptographic operation - ESIGN signature and signature verification

Hierarchical to: No other components.

FCS_COP.1.1;10 The TSF shall perform signature generation and signature verification in
accordance with a specified cryptographic algorithm ESIGN and cryptographic
key sizes any valid value as defined by the referenced standard that meets the
following: IEEE 1363a/D11.

Dependencies: FDP_ITC.1 Import of user data without security attributes, FCS_CKM.4
Cryptographic key destruction, FMT_MSA.2 Secure security attributes.

FCS_COP.1;11 Cryptographic operation - RNG

Hierarchical to: No other components.

FCS_COP.1.1;11 The TSF shall perform random number generation in accordance with a specified
cryptographic algorithm random number generation and cryptographic key sizes
not applicable that meet the following: ANSI X9.31.

Dependencies: FDP_ITC.1 Import of user data without security attributes, FCS_CKM.4
Cryptographic key destruction, FMT_MSA.2 Secure security attributes.

5.1.2 FPT – Protection of the TOE Security Functions

FPT_INTTST.1 Crypto module integrity test

Hierarchical to: No other components.

FPT_INTTST.1.1 The TSF shall run a self-test during initial start-up to verify the integrity of the
cryptopp.dll.

Dependencies: None

18

5.2 SECURITY FUNCTIONAL REQUIREMENTS FOR THE ENVIRONMENT

The environment provides the following security functional requirements. These requirements
include cryptographic key destruction, identification and authentication, user data protection, and
security management functions. All SFRs for the environment are CC Part 2 conformant. Table 5.2
provides a summary list of security functional requirements for the environment.

Table 5.2 – Security Functional Requirements for the Environment

No. Component Component Name
1 FCS_CKM.4 Cryptographic key destruction
2 FDP_ACC.1 Subset access control
3 FDP_ACF.1 Security attribute based access control
4 FDP_ETC.1 Export of user data without security attributes
5 FDP_ITC.1 Import of user data without security attributes
6 FIA_UAU.2 User authentication before any action
7 FIA_UID.2 User identification before any action
8 FMT_MSA.1 Management of security attributes
9 FMT_MSA.2 Secure security attributes

10 FMT_MSA.3 Static attribute initialisation
11 FMT_SMF.1 Specification of management functions
12 FMT_SMR.1 Security roles

5.2.1 FCS – Cryptographic Support

FCS_CKM.4 Cryptographic key destruction

Hierarchical to: No other components.

FCS_CKM.4.1 The TSF shall destroy cryptographic keys in accordance with a specified
cryptographic key destruction method erasure of memory areas containing
cryptographic keys that meets the following: FIPS 140-2, Key Destruction, or
equivalent.

Dependencies: FCS_CKM.1 Cryptographic key generation, FMT_MSA.2 Secure security
attributes

5.2.2 FDP – User Data Protection

FDP_ACC.1 Subset access control

Hierarchical to: No other components.

FDP_ACC.1.1 The TSF environment shall enforce the operating system access controls on

19

a) Subjects: commands executing on behalf of users.

b) Objects: keys and data sent to the TOE for a cryptographic operation and from
the TOE for storage or use elsewhere.

c) Operations: cryptographic operations provided by the TOE.

Dependencies: FDP_ACF.1 Security attribute based access control

FDP_ACF.1 Security attribute based access control

Hierarchical to: No other components.

FDP_ACF.1.1 The TSF environment shall enforce the operating system access controls to
objects based on roles and file and data permissions managed by the operating
system.

FDP_ACF.1.2 The TSF environment shall enforce the following rules to determine if an operation
among controlled subjects and controlled objects is allowed: The roles and
permissions as defined by the operating system.

FDP_ACF.1.3-NIAP-0407 The TSF environment shall explicitly authorise access of subjects to objects
based on the following additional rules: No additional rules.

FDP_ACF.1.4-NIAP-0407 The TSF shall explicitly deny access of subjects to objects based on the no
additional explicit denial rules.

Dependencies: FDP_ACC.1 Subset access control; FMT_MSA.3 Static attribute initialisation

FDP_ETC.1 Export of user data without security attributes

Hierarchical to: No other components.

FDP_ETC.1.1 The TSF environment shall enforce the operating system access controls when
exporting user data, controlled under the SFP(s), outside of the TSC.

FDP_ETC.1.2 The TSF shall export the user data without the user data’s associated security
attributes.

Dependencies: FDP_ACC.1 Subset access control.

FDP_ITC.1 Import of user data without security attributes

Hierarchical to: No other components.

FDP_ITC.1.1 The TSF environment shall enforce the operating system access controls when
importing user data, controlled under the SFP, from outside of the TSC.

FDP_ITC.1.2 The TSF shall ignore any security attributes associated with the user data when
imported from outside the TSC.

20

FDP_ITC.1.3 The TSF shall enforce the following rules when importing user data controlled
under the SFP from outside the TSC: no additional rules.

Dependencies: FDP_ACC.1 Subset access control, FMT_MSA.3 Static attribute initialisation.

5.2.3 FIA – Identification and Authentication

FIA_UAU.2 User authentication before any action

Hierarchical to: FIA_UAU.1

FIA_UAU.2.1 The TSF environment shall require each user to be successfully authenticated
before allowing any other TSF environment-mediated actions on behalf of that
user.

Dependencies: FIA_UID.1 Timing of identification (met by FIA_UID.2, which is hierarchical to
FIA_UID.1)

FIA_UID.2 User identification before any action

Hierarchical to: FIA_UID.1

FIA_UID.2.1 The TSF environment shall require each user to identify itself before allowing any
other TSF environment-mediated actions on behalf of that user.

Dependencies: No dependencies.

5.2.4 FMT – Security Management

FMT_MSA.1 Management of security attributes

Hierarchical to: No other components

FMT_MSA.1.1 The TSF environment shall enforce the operating system access controls to
restrict the ability to modify the security attributes file permissions or other
mechanisms provided by the operating system to protect security assets to the
specific user as defined by the operating system.

Dependencies: FDP_ACC.1 Subset access control; FMT_SMR.1 Security roles, FMT_SMF.1
Specification of management functions.

FMT_MSA.2 Secure security attributes

Hierarchical to: No other components

FMT_MSA.2.1 The TSF environment shall ensure that only secure values are accepted for
security attributes.

21

Dependencies: ADV_SPM.1 Informal TOE security policy model; FDP_ACC.1 Subset access
control; FMT_MSA.1 Management of security attributes; FMT_SMR.1 Security
roles.

FMT_MSA.3 Static attribute initialisation

Hierarchical to: No other components.

FMT_MSA.3.1 The TSF environment shall enforce the operating system access controls to
provide restrictive default values for security attributes that are used to enforce the
SFP.

FMT_MSA.3.2 The TSF environment shall allow the administrator to specify alternative initial
values to override the default values when an object or information is created.

Dependencies: FMT_MSA.1 Management of security attributes, FMT_SMR.1 Security roles.

FMT_SMF.1 Specification of Management Functions

Hierarchical to: No other components

FMT_SMF.1.1 The TSF environment shall be capable of performing the following security
management functions: managing the group of roles that can interact with security
attributes.

Dependencies: No dependencies.

FMT_SMR.1 Security roles

Hierarchical to: No other components.

FMT_SMR.1.1 The TSF environment shall maintain the roles: user, administrator.

FMT_SMR.1.2 The TSF environment shall be able to associate users with roles.

Dependencies: FIA_UID.1 Timing of identification (Met by FIA_UID.2, which is hierarchical to
FIA_UID.1)

5.3 STRENGTH OF FUNCTION REQUIREMENT

There is no threat level assigned to the TOE and no SOF claim is made, since TOE functional
requirements do not include any mechanisms that have a strength of function claim. Strength of
function claims cannot be made for cryptography, including key size and strength of algorithm. No
ISO 15408 functional or assurance family (including AVA_SOF) may be used for the purposes of
evaluating the strength of cryptographic functions or key sizes used. This is because ISO 15408
specifically does not cover the assessment of cryptographic algorithms and related techniques.

The TOE environment includes identification and authentication, for which a SOF analysis can be
performed, however, this is outside the scope of the TOE evaluation.

22

5.4 TOE SECURITY ASSURANCE REQUIREMENTS

The Security Assurance Requirements for the TOE are the assurance components of Evaluation
Assurance Level 2 (EAL2) augmented with ADV_SPM.1, Informal TOE security policy model. The
augmentation is necessary because ADV_SPM.1 is a dependency for FMT_MSA.2. None of the
assurance components is refined. The assurance components are CC Part 3 conformant and are
listed in Table 5.3.

 Table 5.3 - Assurance Components

Assurance Class Assurance Components
Configuration
Management

ACM_CAP.2 Configuration Items

ADO_DEL.1 Delivery proceduresDelivery and
Operation ADO_IGS.1 Installation, generation, and start-up procedures

ADV_FSP.1 Informal functional specification
ADV_HLD.1 Descriptive high-level design
ADV_RCR.1 Informal correspondence demonstration

Development

ADV_SPM.1 Informal TOE security policy model (augmentation)
AGD_ADM.1 Administrator guidanceGuidance Documents
AGD_USR.1 User guidance
ATE_COV.1 Evidence of coverage
ATE_FUN.1 Functional testing

Tests

ATE_IND.2 Independent testing – sample
AVA_SOF.1 Strength of TOE security function evaluationVulnerability

Assessment AVA_VLA.1 Developer vulnerability analysis

23

6 TOE SUMMARY SPECIFICATION

6.1 TOE IT SECURITY FUNCTIONS

This section defines the security mechanisms within the TOE that satisfy the functional
requirements defined in Section 5. The TOE provides the following security mechanisms: key
generation, cryptographic operations, and self test functionality. The functionality is described
below, including identification of the particular functional requirement(s) that is met by the
functionality. Mapping of functionality to functional requirements is included in Section 8 of this ST.
The TSF provides Groove cryptographic support by performing the cryptographic operations listed
below. FIPS-approved operations are denoted with relevant FIPS publication numbers, and other
(non-FIPS) operations are denoted by their relevant specification documents. The operations listed
are implemented in the TSF subsystems (GrooveMisc.dll and/or cryptopp.dll), as designated in
each subsection below. Those subsystem designations are indicated as:

� Subsystem: GrooveMisc.dll — The operation is implemented entirely in GrooveMisc.dll
(cryptopp.dll is not involved). It is externally accessible via a GrooveMisc.dll COM API.
(Note: Some GrooveMisc.dll COM APIs “wrap” functionality implemented in cryptopp.dll, as
explained in Sec. 2.4.3)

� Subsystem: cryptopp.dll — The operation is implemented in cryptopp.dll. It is externally
accessible via a cryptopp.dll C++ API. (Note: The higher-level COM APIs are the
preferred/intended interfaces.)

6.1.1 Key Generation

The TOE generates keys for RSA, AES, Diffie-Hellman, DES, and ESIGN. The key generation
algorithms are implemented according to the standards listed below and are generated using a
FIPS-approved random number generator (specified in ANSI X9.31 – 1998, Appendix A) whenever
random numbers are required for key generation:

� RSA — Key Generation - The TOE generates RSA public and private keys of any valid
value between 512 bits to 64K bits as defined by the referenced standard IEEE 1363-2000.
Subsystems: cryptopp.dll.

� AES — Advanced Encryption Standard Key Generation - The TOE generates 128, 192,
and 256-bit AES keys as specified in FIPS Publication 197. Subsystems: cryptopp.dll.

� DH — Diffie-Hellman Key Generation - The TOE generates Diffie-Hellman public and
private keys of any valid value between 512 bits to 64K bits as defined by the referenced
standard IEEE 1363-20003. Subsystem: GrooveMisc.dll.

� DES — Data Encryption Standard Key Generation - The TOE generates 56-bit DES keys
(for backward compatibility purposes) as specified in FIPS Publication 46-3. Subsystem:
GrooveMisc.dll.

3 IEEE 1363-2000 is the IEEE Standard Specifications for Public Key Cryptography.

24

� ESIGN — Key Generation - The TOE generates ESIGN public and private keys of any valid
value between 512 bits to 64K bits as defined by the referenced standard IEEE
P1363a/D11. Subsystem: GrooveMisc.dll.

The TOE key generation capabilities meet the functional requirement FCS_CKM.1, iterated for each
algorithm type. A list of the iterations is included below. Note that the name of the subject
algorithm is included in the iteration title. Iterations include:

� FCS_CKM.1;1 Cryptographic key generation – RSA
� FCS_CKM.1;2 Cryptographic key generation – AES
� FCS_CKM.1;3 Cryptographic key generation – DES
� FCS_CKM.1;4 Cryptographic key generation – DH
� FCS_CKM.1;5 Cryptographic key generation – ESIGN

6.1.2 Cryptographic Operations

The TOE performs the following cryptographic operations:
� RSA — Encryption and Decryption - The TOE performs RSA encryption and decryption

as specified in IEEE 1363-2000. Subsystems: cryptopp.dll.
� RSA — Signature Generation and Verification - The TOE performs RSA signature

generation and verification as specified in IEEE 1363-2000. Subsystems: cryptopp.dll.
� SHA1 — Secure Hash Algorithm - The TOE performs SHA1 hash operations as specified

in FIPS Publication 180-1. Subsystems: cryptopp.dll.
� HMAC-SHA1 — Keyed-Hashing for Message Authentication used with SHA1 - The

TOE performs HMAC-SHA1 keyed hash operations as specified in FIPS Publication 198.
Key lengths of 0 to 0xffffffff (4294967295) bytes are supported. Subsystems: cryptopp.dll.

� DH — Diffie-Hellman Key Agreement - The TOE performs Diffie-Hellman key agreement
as specified in IEEE 1363-2000. Subsystems: cryptopp.dll.

� DES-ECB — DES Electronic Code Book Encryption and Decryption - The TOE
performs DES encryption and decryption (for backward compatibility purposes) as specified
in FIPS Publication 46-3. Subsystem: GrooveMisc.dll.

� AES-CTR — AES - Counter Mode Encryption and Decryption - The TOE performs AES
encryption and decryption as specified in FIPS Publication 197. Subsystems: cryptopp.dll.

� GDSA — Generalized DSA Signature Generation and Verification - The TOE performs
GDSA signature generation and verification as specified in the IEEE 1363-2000. GDSA is
exactly like DSA except DSA has restrictions on the lower limit for key lengths where 1024 is
the minimum key length. GDSA does not have this restriction. GDSA signature generation
and verification uses Diffie-Hellman keys as specified in IEEE 1363-2000. Valid key lengths
of 512 to 64K bits are supported. Subsystem: GrooveMisc.dll.

� DLIES — Discrete Logarithm Integrated Encryption Scheme Encryption and
Decryption - The TOE performs DLIES encryption and decryption as specified in IEEE

25

P1363a/D114. DLIES encryption and decryption uses Diffie-Hellman public and private
keys, generating them as specified in IEEE 1363-2000. Key lengths of 512 to 64K bits are
supported. Subsystem: GrooveMisc.dll.

� ESIGN — Signature Generation and Verification - The TOE performs ESIGN signature
generation and verification as specified IEEE P1363a/D11. Subsystem: GrooveMisc.dll.

� DefaultSecureRandom — FIPS-Approved Random Number Generation - The TOE
performs random number generation as specified in ANSI X9.31. Subsystems: cryptopp.dll.

The cryptographic operations meet iterations of the functional requirement FCS_COP.1. For
cryptographic operations that require keys, the keys generated through FCS_CKM.1 may be used
or keys may be imported from smart cards, KDCs (key distribution centers), or other sources. In all
cases, the operating system (TOE environment) is responsible for implementing protection of keys
and data while they are under the control of the operating system. A list of the iterations is included
below. Note that the name of the subject algorithm is included in the iteration title. Iterations
include:

� FCS_COP.1;1 Cryptographic operation – RSA encrypt and decrypt
� FCS_COP.1;2 Cryptographic operation – RSA signature and signature verification
� FCS_COP.1;3 Cryptographic operation – SHA-1
� FCS_COP.1;4 Cryptographic operation – Keyed-Hashing for Message Authentication
� FCS_COP.1;5 Cryptographic operation – DH Key agreement
� FCS_COP.1;6 Cryptographic operation – DES-ECB encrypt and decrypt
� FCS_COP.1;7 Cryptographic operation – AES-CTR encrypt and decrypt
� FCS_COP.1;8 Cryptographic operation – GDSA signature and signature verification
� FCS_COP.1;9 Cryptographic operation – DLIES encrypt and decrypt
� FCS_COP.1;10 Cryptographic operation – ESIGN signature and signature verification
� FCS_COP.1;11 Cryptographic operation – RNG

6.1.3 Self-Tests

The TOE runs a suite of self-tests during initial start-up to verify the integrity of the cryptopp.dll DLL.
The self-tests consist of tests specified in FIPS Publication 140-2 for level 1 cryptographic modules.
These include:

� Cryptographic algorithm test. A cryptographic algorithm test using a known answer is
conducted for all cryptographic functions (e.g., encryption, decryption, authentication, and
random number generation) of each Approved cryptographic algorithm implemented by a
cryptographic module. A known-answer test involves operating the cryptographic algorithm
on data for which the correct output is already known and comparing the calculated output
with the previously generated output (the known answer). If the calculated output does not
equal the known answer, the known-answer test fails.

4 IEEE P1363a/D11 is Draft 11 the Proposed IEEE Standard Specifications for Public Key
Cryptography: Additional Techniques.

26

� Software/firmware integrity test. A software/firmware integrity test using an error detection
code (EDC) or Approved authentication technique (e.g., an Approved message
authentication code or digital signature algorithm) is applied to all components within the
cryptopp.dll on power up.

The integrity of the GrooveMisc.dll DLL is not claimed to be checked; however, the trigger for the
cryptopp.dll self-test is exposed by the COM API of GrooveMisc.dll. Subsystems: cryptopp.dll.
The power-up self tests and conditional tests meet the functional requirement explicitly stated
requirement FPT_INTTST.1.
The self-test executes the first time the program obtains a pointer to the crypto helper as shown in
the following example:
IGrooveCryptoHelperPtr pCryptoHelper(CLSID_GrooveCryptoServices);

Note that IGrooveCryptoHelperPtr is a smart pointer. If object creation fails because self-test
failed, the smart pointer throws the exception, enters an error state, and displays an error message:
The Groove default cryptographic services provider failed its startup self-test.
Groove may not be properly installed.

6.2 ENVIRONMENTAL SECURITY FUNCTIONS

The IT security environment provides significant support to the TOE by providing key destruction,
access control, identification and authentication, and security management functionality. The IT
security environment is provided by one of the three tested PC operating systems, including the
Microsoft Windows 2000, Windows NT, or Windows XP operating systems. The functionality is
described below, including identification of the particular functional requirement(s) that is met by the
functionality. Mapping of functionality to functional requirements is included in Section 8 of this ST.

6.2.1 Cryptographic Key Destruction

The TOE only stores keys in memory while they are in use. However, the operating system may
swap memory that contains keys out to the disk. To zeroize those keys, the swap file must be
wiped. One way to do that is to reformat the hard drive(s) containing the swap file, a function that is
performed by the operating system. This is the method of key destruction used by the environment.
Compliance with the FIPS 140-2 key zeroization requirements was certified as part of the FIPS
validation of cryptopp.dll. The environment key destruction capability meets functional requirement
FCS_CKM.4. Relevant instructions are provided to Windows administrators in a separate document
titled Installing Groove Workspace in its NIAP-Validated Configuration.

6.2.2 Access Control

The TOE is restricted to use on Windows 2000, Windows NT, or Windows XP. Setup of the
operating system for secure operation is defined in the Administrator Guide for the TOE.
Access control is required to protect sensitive information and operations. FDP_ACC.1 and
FDP_ACF.1 require the enforcement of system access controls on all system users for data and
operations performed on that data. Note that the Administrator is warned to ignore the periodic
“update available” message that appears to notify the user that an update is available; the CC
evaluated version should not be updated automatically.

27

6.2.3 Data and Key Export

The TOE is restricted to use on Windows 2000, Windows NT, or Windows XP. The operating
system is responsible for ensuring that data may only be exported from the TOE to a location that is
secure and is under the control of the authenticated user. Data and key export is used to move
keys from a key generation operation or from a cryptographic operation within the TOE to a user
controlled memory or storage location.
Setup of the operating system for secure operation is defined in the Administrator Guide for the
TOE.
Data and key export restrictions are required to protect keys and data from unauthorised storage or
use. FDP_ETC.1 requires that the environment enforce the operating system access control rules
when exporting user data outside of the TOE.

6.2.4 Data and Key Import

The TOE is restricted to use on Windows 2000, Windows NT, or Windows XP. The operating
system is responsible for ensuring that data may only be imported to the TOE from a location that is
secure and is under the control of the authenticated user. Examples of imported data may be keys,
data for hashing, data to be digitally signed, data to be verified, data to be encrypted, data to be
decrypted, seed data for random number generation or some combination of several of the above
elements. For cryptographic operations that require keys, the keys generated through FCS_CKM.1
may be used or keys may be imported from smart cards, KDCs (key distribution centers), or other
sources. In all cases, the operating system is responsible for implementing protection of keys and
data while they are under the control of the operating system or the application.
Standard installation of the specified Windows operating system software as defined in the
Microsoft Windows administration documentation will ensure that data may only be imported to the
TOE from a location that is secure and is under the control of the authenticated user. This is
mentioned to TOE administrators in a separate document titled Installing Groove Workspace in its
NIAP-Validated Configuration.
Data and key export restrictions are required to protect keys and data from unauthorised storage or
use. FDP_ITC.1 requires that the environment enforce the operating system access control rules
when importing user data from outside of the TOE.

6.2.5 Identification and Authentication

The operating system is responsible for requiring identification and authentication for all users.
Windows 2000, Windows NT and Windows XP require a user ID and password for identification and
authentication for user access to any system assets or operations, including access to the TOE.
This functionality meets functional requirements FIA_UAU.2 and FIA_UID.2. TOE administrator
information and relevant procedures are provided to TOE administrators in a separate document
titled Installing Groove Workspace in its NIAP-Validated Configuration.

28

6.2.6 Security Management

All persistent security-related data such as keys, passwords, and security attributes reside in the
OS file system in an encrypted state to prevent disclosure. Persistent storage and protection of this
data is the responsibility of the operating system. OS protection of security attributes and assets
meets functional requirements FMT_MSA.1, FMT_MSA.2, FMT_MSA.3, and FMT_SMF.1.
The cryptographic module runs on the Microsoft Windows 2000, Windows NT, or Windows XP
Operating System and depends on the operating system for operator identification and
authentication. The environment supports the user and administrator roles. The support of the user
and administrator roles meets functional requirement FMT_SMR.1. Note that the Administrator is
warned to ignore the periodic “update available” message that appears to notify the user that an
update is available; the CC evaluated version should not be updated automatically. Relevant
environment configuration instructions are provided to Windows administrators in a separate
document titled Installing Groove Workspace in its NIAP-Validated Configuration.

6.3 STRENGTH OF FUNCTION REQUIREMENT

There is no threat level assigned to the TOE and no SOF claim is made, since TOE functional
requirements do not include any mechanisms that have a strength of function claim. Strength of
function claims cannot be made for cryptography, including key size and strength of algorithm. No
ISO 15408 functional or assurance family (including AVA_SOF) may be used for the purposes of
evaluating the strength of cryptographic functions or key sizes used. This is because ISO 15408
specifically does not cover the assessment of cryptographic algorithms and related techniques.

The TOE environment includes identification and authentication, for which a SOF analysis can be
performed, however, this is outside the scope of the TOE evaluation.

6.4 ASSURANCE MEASURES

The assurance level selected for the TOE was EAL2 because it is applicable in those
circumstances where developers or users require a low to moderate level of independently assured
security in the absence of ready availability of the complete development record.
EAL2 also provides assurance through a configuration list for the TOE, and evidence of secure
delivery procedures.
This EAL represents a meaningful increase in assurance from EAL1 by requiring developer testing,
a vulnerability analysis, and independent testing based upon more detailed TOE specifications.
Appropriate assurance measures will be employed to satisfy the security assurance requirements.
The evaluation will confirm whether the assurance measures are sufficient to satisfy the assurance
requirements. The assurance measures will consist of the set of evaluation evidence listed in Table
6.1, below. The documents listed in the table will be used as to satisfy assurance evaluation
requirements.

29

Table 6.1 – Assurance Evaluation Evidence

Assurance
Requirement

Evidence

ACM_CAP.2 Classes: ACM, ADO, AGD, and AVA, Revision 1.3 (NIAP_ACM_ADO_AGD_AVA)
ADO_DEL.1 Classes: ACM, ADO, AGD, and AVA, Revision 1.3 (NIAP_ACM_ADO_AGD_AVA)
ADO_IGS.1 Classes: ACM, ADO, AGD, and AVA, Revision 1.3 (NIAP_ACM_ADO_AGD_AVA)
ADV_FSP.1 Class ADV: Development Documentation, Revision 1.3 (NIAP_ADV)
ADV_HLD.1 Class ADV: Development Documentation, Revision 1.3 (NIAP_ADV)
ADV_RCR.1 Class ADV: Development Documentation, Revision 1.3 (NIAP_ADV)
ADV_SPM.1 Class ADV: Development Documentation, Revision 1.3 (NIAP_ADV)
AGD_ADM.1 Classes: ACM, ADO, AGD, and AVA, Revision 1.3 (NIAP_ACM_ADO_AGD_AVA)
AGD_USR.1 Classes: ACM, ADO, AGD, and AVA, Revision 1.3 (NIAP_ACM_ADO_AGD_AVA)
ATE_COV.1 Class ATE: Test Documents, Revision 1.3 (NIAP_ATE)
ATE_FUN.1 Class ATE: Test Documents, Revision 1.3 (NIAP_ATE)
ATE_IND.2 Class ATE: Test Documents, Revision 1.3 (NIAP_ATE)
AVA_SOF.1 Classes: ACM, ADO, AGD, and AVA, Revision 1.3 (NIAP_ACM_ADO_AGD_AVA)
AVA_VLA.1 Classes: ACM, ADO, AGD, and AVA, Revision 1.3 (NIAP_ACM_ADO_AGD_AVA)

30

7 PP CLAIMS

This Security Target was not written to address any existing Protection Profile.

31

8 RATIONALE

8.1 SECURITY OBJECTIVES RATIONALE

This section consists of two subsections. Section 8.1.1 shows that all of the secure usage
assumptions and threats to security have been addressed. Section 8.1.2 shows that each IT
security objective and each non-IT security objective counters at least one assumption or threat.

8.1.1 All Assumptions and Threats Addressed

Table 8.1 shows that all the identified assumptions and threats to security have been addressed.
Note that TOE assumptions and threats have the prefix “A.” and “T.” respectively. Assumptions and
threats for the environment have the prefix “AE.” and “TE.” respectively. The rationale for these
mappings is discussed below.
T.HACK_CRYPTO states that cryptographic algorithms may be incorrectly implemented or may
operate incorrectly, allowing an unauthorised individual or user to decipher keys or data and
thereby gain unauthorised access to data. This threat is countered by O.ALGORITHMS, which
ensures that the TOE implements cryptographic algorithms according to specified standards and
performs cryptographic operations in accordance with specified algorithms using cryptographic keys
of a specified size.
T.MALFUNCTION states that the TOE may enter an unsecure state at startup due to a malfunction.
This threat is countered by O.SELF_TEST, which ensures that the TOE performs self-tests at
startup to ensure correct functioning of TOE operations.
AE.OS provides the assumption that the TOE is installed on a PC running Microsoft Window 2000,
Windows NT or Windows XP. This environmental assumption is met by OE.OS, which ensures that
the security environment includes a PC running Microsoft Windows 2000, NT, or XP.
AE.TRUSTED_ADMIN provides the assumption that the Administrator, who is responsible for
configuring the operating system, is a trusted user and that the Administrator will properly install
and configure the TOE. This environmental assumption is met by OE.TRUSTED_ADMIN, which
ensures that appropriate policies and procedures are provided to ensure that the Administrator is a
trusted user and that the environment provides functionality that enables an the Administrator to
configure the system in accordance with a specified TOE Security Policy Model. This may include
operating system configuration and setup manuals and instructions.
TE.ATTACK states that an undetected compromise of the TOE assets may occur as a result of an
attacker (whether an insider or outsider) attempting to perform actions that the individual is not
authorised to perform. This environmental threat is countered by OE.DAC, which ensures that the
security environment controls and restricts user access to the TOE assets in accordance with a
specified access control policy.

32

Table 8.1 – All Assumptions and Threats to Security Countered by Objectives

Threat Name Threat Description Objective
1 T.HACK_CRYPTO Cryptographic algorithms may be incorrectly implemented

or may operate incorrectly, allowing an unauthorised
individual or user to decipher keys or data and thereby gain
unauthorised access to data.

O.ALGORITHMS

2 T.MALFUNCTION The TOE may enter an unsecure state at startup due to a
malfunction.

O.SELF_TEST

3 AE.OS It is assumed that the TOE is installed on a PC running
Microsoft Window 2000, Windows NT or Windows XP.

OE.OS

4 AE.TRUSTED_ADMIN It is assumed that the administrator, who is responsible for
configuring the operating system, is a trusted user and that
the administrator will properly install and configure the
TOE.

OE.TRUSTED_ADMIN

5 TE.ATTACK An undetected compromise of the TOE assets may occur
as a result of an attacker (whether an insider or outsider)
attempting to perform actions that the individual is not
authorised to perform.

OE.DAC

6 TE.BYPASS An unauthorised individual or user may tamper with
security attributes or other data in order to bypass OS
security functions and gain unauthorised access to TOE
assets.

OE.LIMIT_ACTIONS

7 TE.CRYPTO_DES Incorrect cryptographic key destruction may cause an
inadvertent disclosure of sensitive information.

OE.DESTRUCT

8 TE.EXPORT A user or an attacker may export data to an unsecure
location or may export corrupted data, causing the data
exported to be added to or substituted for original data
and/or to reveal secrets or causing exported data to be
erroneous and unusable.

OE.EXPORT

9 TE.IMPERSON An unauthorised individual may impersonate an authorised
user of the OS and thereby gain access to TOE data, keys,
and operations.

OE.I&A

10 TE.IMPORT A user or attacker may import data or keys from an
unsecure location or data with errors, causing key/data
ownership and authorisation to be uncertain or erroneous
and/or the system to malfunction or operate in an unsecure
manner.

OE.IMPORT

11 TE.MODIFY An attacker may modify OS or user data, e.g., file
permissions, in order to gain access to the TOE and its
assets.

OE.SECURITY_MGT

12 E.OBJECT_INIT An attacker may gain unauthorised access to an object
upon its creation if the security attributes are not assigned
to the object or an unauthorised individual can assign the
security attributes upon object creation.

OE.INIT_SECURE

13 TE.ROLE A user may assume more privileged role than permitted
and use the enhanced privilege to take unauthorised
actions.

OE.SECURITY_ROLES

14 TE.SECURE_ATT A user may supply unsecure values for the security
attributes of an object and gain unauthorised access to the
object.

OE.SECURE

33

TE.BYPASS states that an unauthorised individual or user may tamper with security attributes or
other data in order to bypass OS security functions and gain unauthorised access to TOE assets.
This environmental threat is countered by OE.LIMIT_ACTIONS, which ensures that the security
environment restricts the actions a user may perform before the TSF verifies the identity of the user.
TE.CRYPTO_DES states that incorrect cryptographic key destruction may cause an inadvertent
disclosure of sensitive information. This threat is countered by OE.DESTRUCT, which ensures that
the environment performs cryptographic key destruction in accordance with FIPS Publication 140-2
key destruction requirements.
TE.EXPORT states that a user or an attacker may export data to an unsecure location or may
export corrupted data, causing the data exported to be added to or substituted for original data
and/or to reveal secrets or causing exported data to be erroneous and unusable. This
environmental threat is countered by OE.EXPORT, which ensures that when data are exported
outside the TOE, the security environment ensures that the data is exported to an authenticated
user and location according to the operating system access control rules.
TE.IMPERSON states that an unauthorised individual may impersonate an authorised user of the
OS and thereby gain access to TOE data, keys, and operations. This environmental threat is
countered by OE.I&A, which ensures that the security environment uniquely identifies all users and
authenticates the claimed identity before granting a user access to the TOE facilities.
TE.IMPORT states that a user or attacker may import data or keys from an unsecure location or
data with errors, causing key/data ownership and authorisation to be uncertain or erroneous and/or
the system to malfunction or operate in an unsecure manner. This environmental threat is
countered by OE.IMPORT, which ensures that when data are being imported into the TOE, the
security environment ensures that the data is from authenticated user and location according to the
operating system access control rules.
TE.MODIFY states that an attacker may modify OS or user data, e.g., file permissions, in order to
gain access to the TOE and its assets. This environmental threat is countered by
OE.SECURITY_MGT, which ensures that the security environment shall enforce access control to
ensure that only authorised users may change security attributes.
TE.OBJECT_INIT states that an attacker may gain unauthorised access to an object upon its
creation if the security attributes are not assigned to the object or an unauthorised individual
assigns the security attributes upon object creation. This environmental threat is countered by
OE.INIT_SECURE, which ensures that the security environment provides valid default security
attributes when an object is initialized and that only authorised individuals are allowed to change
default security attributes.
TE.ROLE states that a user may assume more privileged role than permitted and use the enhanced
privilege to take unauthorised actions. This environmental threat is countered by
OE.SECURITY_ROLES, which ensures that the security environment maintains security-relevant
roles and association of users with those roles.
TE.SECURE_ATT, A user may supply unsecure values for the security attributes of an object and
gain unauthorised access to the object. This environmental threat is countered by OE.SECURE,
which ensures that the security environment shall permit only secure values for security attributes.

34

8.1.2 All Objectives Necessary

Table 8.2 shows that there are no unnecessary IT security objectives for the TOE, since each
objective addresses at least one threat or secure usage assumption. Mapping rationale is
discussed in the previous section and is not repeated here, since each objective maps to one threat
and each threat maps to one objective, i.e., mapping for objectives to threats is the same as threats
to objectives.

Table 8.2 – All IT Security Objectives Necessary

Objective Name Objective Description Threat/Assumption
1 O.ALGORITHMS The TOE must implement cryptographic algorithms

according to specified standards and perform
cryptographic operations in accordance with specified
algorithms using cryptographic keys of a specified
size.

T.HACK_CRYPTO

2 O.SELF_TEST The TOE must perform self-tests at startup to ensure
correct functioning of TOE operations.

T.MALFUNCTION

3 OE.DAC The security environment shall control and restrict
user access to the TOE assets in accordance with a
specified access control policy.

TE.ATTACK

4 OE.DESTRUCT The environment must perform cryptographic key
destruction in accordance with FIPS 140 key
destruction requirements.

TE.CRYPTO_DES

5 OE.EXPORT When data are exported outside the TOE, the security
environment shall ensure that the data is exported to
an authenticated user and location according to the
operating system access control rules.

TE.EXPORT

6 OE.I&A The security environment shall uniquely identify all
users and shall authenticate the claimed identity
before granting a user access to the TOE facilities.

TE.IMPERSON

7 OE.IMPORT When data are being imported into the TOE, the
security environment shall ensure that the data is from
authenticated user and location according to the
operating system access control rules.

TE.IMPORT

8 OE.INIT_SECURE The security environment shall provide valid default
security attributes when an object is initialized and
shall allow only authorised users to change default
security attributes.

TE.OBJECT_INIT

9 OE.LIMIT_ACTIONS The security environment shall restrict the actions a
user may perform before the TSF verifies the identity
of the user.

TE.BYPASS

35

Table 8.2, Concluded
Objective Name Objective Description Threat/Assumption

10 OE.OS The security environment shall include a PC running
Microsoft Windows 2000, Windows NT or Windows
XP.

AE.OS

11 OE.SECURE The security environment shall permit only secure
values for security attributes.

TE.SECURE_ATT

12 OE.SECURITY_MGT The security environment shall enforce access control
to ensure that only authorised users may change
security attributes.

TE.MODIFY

13 OE.SECURITY_ROLES The security environment shall maintain security-
relevant roles and association of users with those
roles.

TE.ROLE

14 OE.TRUSTED_ADMIN The security environment shall provide policies and
procedures to ensure that the administrator is a
trusted user and shall provide functionality that
enables the administrator to configure the system in
accordance with a specified TOE Security Policy
Model.

AE.TRUSTED_ADMIN

36

8.2 SECURITY REQUIREMENTS RATIONALE

8.2.1 All Objectives Met by Security Requirements

Table 8.3 maps IT security objectives to functional and assurance requirements. Objectives and
mapped requirements for the TOE are identified by an “O.” prefix on the objective. Objectives for
and mapped requirements for the environment are identified by an “OE.” Prefix on the objective.
The rationale for the mappings is discussed below.

Table 8.3– Mapping of IT Security Objectives to Requirements

No Objective Name Security
Requirement

1 O.ALGORITHMS FCS_CKM.1
FCS_COP.1

2 O.SELF_TEST FPT_INTTST.1
3 OE.DAC FDP_ACC.1

FDP_ACF.1
4 OE.DESTRUCT FCS_CKM.4
5 OE.EXPORT FDP_ETC.1
6 OE.I&A FIA_UAU.2

FIA_UID.2
7 OE.IMPORT FDP_ITC.1
8 OE.INIT_SECURE FMT_MSA.3
9 OE.LIMIT_ACTIONS FIA_UAU.2

FIA_UID.2
10 OE.OS ADO_IGS.1

AGD_ADM.1
ADV_SPM.1

11 OE.SECURE FMT_MSA.2
12 OE.SECURITY_MGT FMT_MSA.1

FMT_SMF.1
13 OE.SECURITY_ROLES FMT_SMR.1

FMT_SMF.1
14 OE.TRUSTED_ADMIN ADO_IGS.1

AGD_ADM.1
ADV_SPM.1

O.ALGORITHMS states that the TOE must implement cryptographic algorithms according to
specified standards and perform cryptographic operations in accordance with specified algorithms
using cryptographic keys of a specified size. This objective is met by functional requirements
FCS_CKM.1, Cryptographic Key Generation and FCS_COP.1, Cryptographic operation. For key
generation, iterations of FCS_CKM.1 define specific industry or government standards that must be
met by the TOE. For cryptographic operations such as encrypt, decrypt, signature, signature
verification, etc., iterations of FCS_COP.1 define specific industry or government standards that
must be met by the TOE.

37

O.SELF_TEST states that the TOE must perform self-tests at startup to ensure correct functioning
of TOE operations. This objective is met by FPT_INTTST.1, Crypto module integrity test.
FPT_INTTST.1 requires the performance of a set of self-tests at system startup.
OE.DAC states that the security environment shall control and restrict user access to the TOE
assets in accordance with a specified access control policy. This objective is mapped to
FDP_ACC.1, Subset access control, and FDP_ACF.1, Security attribute based access control.
These two requirements require operating system access control to subjects, objects, and
operations based on security attributes.
OE.DESTRUCT states that the environment must perform cryptographic key destruction in
accordance with FIPS Publication 140-2 key destruction requirements. This objective is met by
FCS_CKM.4, Cryptographic key destruction, which requires that the environment perform key
destruction in accordance with FIPS Publication 140-2 key destruction requirements.
OE.EXPORT states that when data are exported outside the TOE, the security environment shall
ensure that the data is exported to an authorised user and location according to the operating
system access control rules. This objective is met by FDP_ETC.1, Export of user data without
security attributes, which requires that the TSF environment enforce the operating system access
control SFPs when exporting user data outside the TSC.
OE.I&A states that the security environment shall uniquely identify all users and shall authenticate
the claimed identity before granting a user access to the TOE facilities. This objective is met by the
functional requirements FIA_UAU.2, User authentication before any action, and FIA_UID.2, User
identification before any action. FIA_UAU.2 states that all users must be authenticated prior to any
access to the security environment or TOE. FIA_UID.2 states that all users must be identified prior
to any access to the security environment or TOE.
OE.IMPORT states that when data are imported into the TOE, the security environment ensures
that the data is from an authorised user and location according to the operating system access
control rules. This objective is met by FDP_ITC.1, Import of user data without security attributes,
which requires that the TSF environment shall enforce the operating system access control SFPs
when importing user data from outside the TOE.
OE.INIT_SECURE states that the security environment shall provide valid default security attributes
when an object is initialized and that only authorised users are allowed to change default security
attributes. This objective is met by FMT_MSA.3, Static attribute initialization, which requires that
the operating system provide restrictive default values for security attribute initialization and that the
user may override default values with appropriate authorisation.
OE.LIMIT_ACTIONS states that the security environment shall restrict the actions a user may
perform before the TSF verifies the identity of the user. This objective is met by the functional
requirements FIA_UAU.2, User authentication before any action, and FIA_UID.2, User identification
before any action. FIA_UAU.2 states that all users must be authenticated prior to any access to the
security environment or actions taken. FIA_UID.2 states that all users must be identified prior to
any access to the security environment or actions taken.
OE.OS states that the security environment shall include a PC running Microsoft Windows 2000,
Windows NT or Windows XP. This objective is met by assurance requirements ADO_IGS.1,
Installation, Generation, and Startup Procedures, AGD_ADM.1, Administrator Guidance, and
ADV_SPM.1, Informal TOE Security Policy Model. The first two documents define system
installation, setup and administration procedures that ensure that the operating system is Microsoft
Windows 2000, Windows NT or Windows XP. ADV_SPM.1 requires a security policy model that
states that Microsoft Windows 2000, Windows NT, are Windows XP are the approved operating
systems defined for the security policy model.

38

OE.SECURE states that the security environment shall permit only secure values for security
attributes. This objective is met by FMT_MSA.2, Secure security attributes, which requires that only
secure values be accepted by the OS for security attributes.
OE.SECURITY_MGT states that the security environment shall enforce access control to ensure
that only authorised users may change security attributes. This objective is met by FMT_MSA.1,
Management of security attributes, which states that the operating system access control policy
shall be enforced to ensure that only authorised users may change security attributes. This
objective is supported by FMT_SMF.1, which is a dependency of FMT_MSA.1 that states that the
environment must manage the group of roles that are able to change security attributes.
OE.SECURITY_ROLES states that the security environment shall maintain security-relevant roles
and association of users with those roles. This objective is met by FMT_SMR.1, Security roles,
which defines the roles that must be defined and maintained by the security environment, i.e., user
and administrator. This objective is supported by FMT_SMF.1, which states that the environment
must manage the group of roles that are able to change security attributes.
O.TRUSTED_ADMIN states that the security environment must provide policies and procedures to
ensure that the administrator is a trusted user and that the TOE is properly installed and configured.
This objective is met by assurance requirements ADO_IGS.1, Installation, Generation, and Startup
Procedures, AGD_ADM.1, Administrator Guidance, and ADV_SPM.1, Informal TOE Security Policy
Model. The first two documents define system installation, setup and administration procedures
that ensure that the system is configured so that login and password is required prior to any user
access, and that security relevant data is properly protected within operating system files. The
security policy model defines the data that must be protected, while providing a specific TOE
security policy. Documentation on operating system setup and personnel referenced in these
manuals provides assurance that there are policies and procedures for ensuring that the
administrator is a trusted user.

8.2.2 All Functional Components Necessary

Table 8.4 shows that each functional requirement is necessary, since it is used to address at least
one of the IT security objectives. Note that functional requirements for the TOE map to objectives
with an “O.” prefix and functional requirements for the environment map to an “OE.” prefix.
Discussion of the mapping is provided in the previous section.

39

Table 8.4– Mapping of Functional Requirements to IT Security Objectives

Component Component Name Objective
1 FCS_CKM.1 Cryptographic key generation O.ALGORITHMS
2 FCS_CKM.4 Cryptographic key destruction OE.DESTRUCT
3 FCS_COP.1 Cryptographic operation O.ALGORITHMS
4 FDP_ACC.1 Subset access control OE.DAC
5 FDP_ACF.1 Security attribute based access control OE.DAC
6 FDP_ETC.1 Export of user data without security

attributes
OE.EXPORT

7 FDP_ITC.1 Import of user data without security
attributes

OE.IMPORT

8 FIA_UAU.2 User authentication before any action OE.I&A
OE.LIMIT_ACTIONS

9 FIA_UID.2 User identification before any action OE.I&A
OE.LIMIT_ACTIONS

10 FMT_MSA.1 Management of security attributes OE.SECURITY_MGT
11 FMT_MSA.2 Secure security attributes OE.SECURE
12 FMT_MSA.3 Static attribute initialisation OE.INIT_SECURE
13 FMT_SMF.1 Specification of management functions OE.SECURITY_MGT

OE.SECURITY_ROLES
14 FMT_SMR.1 Security roles OE.SECURITY_ROLES
15 FPT_INTTST.1 Crypto module integrity test O.SELF_TEST

40

8.2.3 Satisfaction of Dependencies

Table 8.5 shows the dependencies between the functional requirements. Note that dependencies
to assurance requirements show a reference of “Assurance” and that these requirements are
included in the assurance requirements for the TOE.

Table 8.5 – Functional Requirements Dependencies

No Component Component Name Dependencies Reference
Functional Requirements for the TOE

1a FCS_CKM.1;1 Cryptographic key generation – RSA FCS_COP.1;1
FCS_COP.1;2
FCS_COP1;11
FCS_CKM.4
FMT_MSA.2

2a
2b
2k
4
12

1b FCS_CKM.1;2 Cryptographic key generation – AES FCS_COP.1;7
FCS_CKM.4
FMT_MSA.2

2g
4
12

1c FCS_CKM.1;3 Cryptographic key generation – DES FCS_COP.1;6
FCS_CKM.4
FMT_MSA.2

2f
4
12

1e FCS_CKM.1;4 Cryptographic key generation – DH FCS_COP.1;5
FCS_COP1;8
FCS_COP.1;9
FCS_COP1;11
FCS_CKM.4
FMT_MSA.2

2e
2h
2i
2k
4
12

1f FCS_CKM.1;5 Cryptographic key generation -
ESIGN

FCS_COP.1;10
FCS_CKM.4
FMT_MSA.2

2j
4
12

2a FCS_COP.1;1 Cryptographic operation – RSA
encrypt and decrypt

FDP_ITC.1
FCS_CKM.4
FMT_MSA.2

8
4
12

2b FCS_COP.1;2 Cryptographic operation – RSA
signature and signature verification

FDP_ITC.1
FCS_CKM.4
FMT_MSA.2

8
4
12

2c FCS_COP.1;3 Cryptographic operation – SHA-1 FDP_ITC.1
FCS_CKM.4
FMT_MSA.2

8
4
12

2d FCS_COP.1;4 Cryptographic operation – Keyed-
Hashing for Message Authentication

FDP_ITC.1
FCS_CKM.4
FMT_MSA.2

8
4
12

2e FCS_COP.1;5 Cryptographic operation – DH Key
Agreement

FDP_ITC.1
FCS_CKM.4
FMT_MSA.2

8
4
12

41

No Component Component Name Dependencies Reference
Functional Requirements for the TOE (concluded)

2f FCS_COP.1;6 Cryptographic operation – DES-ECB
encrypt and decrypt

FDP_ITC.1
FCS_CKM.4
FMT_MSA.2

8
4
12

2g FCS_COP.1;7 Cryptographic operation – AES-CTR
encrypt and decrypt

FDP_ITC.1
FCS_CKM.4
FMT_MSA.2

8
4
12

2h FCS_COP.1;8 Cryptographic operation – GDSA
signature and signature verification

FDP_ITC.1
FCS_CKM.4
FMT_MSA.2

8
4
12

2i FCS_COP.1;9 Cryptographic operation – DLIES
encrypt and decrypt

FDP_ITC.1
FCS_CKM.4
FMT_MSA.2

8
4
12

2j FCS_COP.1;10 Cryptographic operation – ESIGN
signature and signature verification

FDP_ITC.1
FCS_CKM.4
FMT_MSA.2

8
4
12

2k FCS_COP.1;11 Cryptographic operation - RNG FDP_ITC.1
FCS_CKM.4
FMT_MSA.2

8
4
12

3 FPT_INTTST.1 Crypto module integrity test none none
Functional Requirements for the Environment

4 FCS_CKM.4 Cryptographic key destruction FCS_CKM.1
FMT_MSA.2

1 (all iterations)
12

5 FDP_ACC.1 Subset access control FDP_ACF.1 6
6 FDP_ACF.1 Security attribute based access

control
FDP_ACC.1
FMT_MSA.3

5
13

7 FDP_ETC.1 Export of user data without security
attributes

FDP_ACC.1 5

8 FDP_ITC.1 Import of user data without security
attributes

FDP_ACC.1
FMT_MSA.3

5
13

9 FIA_UAU.2 User authentication before any
action

FIA_UID.1 (met by
FIA_UID.2, which is

hierarchical to
FIA_UID.1)

10

10 FIA_UID.2 User identification before any action none none
11 FMT_MSA.1 Management of security attributes FDP_ACC.1

FMT_SMF.1
FMT_SMR.1

5
14
15

12 FMT_MSA.2 Secure security attributes ADV_SPM.1
FDP_ACC.1
FMT_MSA.1
FMT_SMR.1

Augmented
assurance

5
11
15

13 FMT_MSA.3 Static attribute initialisation FMT_MSA.1
FMT_SMR.1

11
15

14 FMT_SMF.1 Specification of Management
Functions

None none

15 FMT_SMR.1 Security roles FIA_UID.1 (met by
FIA_UID.2)

10

42

Note that for dependencies of iterations of FCS_CKM.1 on FCS_COP.1, the dependencies listed
are for the iteration of FCS_CKM.1 for key generation that matches the FCS_COP.1 iteration that
either provides information for or that uses that key or key pair.

8.2.4 Assurance Rationale

EAL2 was selected as the assurance level because the TOE is a commercial product whose users
require a low to moderate level of independently assured security. The TOE has been developed
using a cryptographic library for which there is an absence of ready availability of the complete
development record. The security objectives defined for the TOE are consistent with an EAL2
assurance level and EAL2 is sufficient to satisfy the security objectives of the TOE.
EAL2 provides assurance by an analysis of the security functions, using a functional and interface
specification, guidance documentation and the high-level design of the TOE, to understand the
security behaviour. The analysis is supported by independent testing of the TOE security functions,
evidence of developer testing based on the functional specification, selective independent
confirmation of the developer test results, strength of function analysis, and evidence of a developer
search for obvious vulnerabilities (e.g. those in the public domain). EAL2 also provides assurance
through a configuration list for the TOE and evidence of secure delivery procedures. The TOE and
related documentation have all of the characteristics required for EAL2.
ADV_SPM.1 is an augmentation of EAL2 requirements. It was included because it is a dependency
of FMT_MSA.2, which in turn is a dependency of FCS_CKM.4 and FCS_COP.1.

8.3 TOE SUMMARY SPECIFICATION RATIONALE

8.3.1 All TOE Security Functional Requirements Satisfied

Table 8.6 shows that the IT Security Functions in the TOE Summary Specification (TSS) address all
of the TOE Security Functional Requirements. The mappings are discussed in detail in Section 6.
As described in Section 6, all functional components map to a TOE Security Function. TOE
Security functions are:

� Key Generation

� Cryptographic Operations

� Self-tests

Table 8.6 – Mapping of Functional Requirements to TOE Summary Specification

No Functional
Component

Functional Requirement TOE Security Function

1 FCS_CKM.1 Cryptographic key generation Key Generation
2 FCS_COP.1 Cryptographic operation Cryptographic Operations
3 FPT_INTTST.1 Crypto module integrity test Self-tests

43

8.3.1.1 Key Generation
The TOE key generation capabilities addressed in Section 6.1.1 meet the functional requirement
FCS_CKM.1, iterated for each algorithm type. A list of the iterations is included below. Note that
the name of the subject algorithm is included in the iteration title. Iterations include:

� FCS_CKM.1;1 Cryptographic key generation – RSA
� FCS_CKM.1;2 Cryptographic key generation – AES
� FCS_CKM.1;3 Cryptographic key generation – DES
� FCS_CKM.1;4 Cryptographic key generation – DH
� FCS_CKM.1;5 Cryptographic key generation – ESIGN

8.3.1.2 Cryptographic Operations
The cryptographic operations, addressed in Section 6.1.2, meet iterations of the functional
requirement FCS_COP.1. A list of the iterations is included below. Note that the name of the
subject algorithm is included in the iteration title. Iterations include:

� FCS_COP.1;1 Cryptographic operation – RSA encrypt and decrypt
� FCS_COP.1;2 Cryptographic operation – RSA signature and signature verification
� FCS_COP.1;3 Cryptographic operation – SHA-1
� FCS_COP.1;4 Cryptographic operation – Keyed-Hashing for Message Authentication
� FCS_COP.1;5 Cryptographic operation – DH Key agreement
� FCS_COP.1;6 Cryptographic operation – DES-ECB encrypt and decrypt
� FCS_COP.1;7 Cryptographic operation – AES-CTR encrypt and decrypt
� FCS_COP.1;8 Cryptographic operation – GDSA signature and signature verification
� FCS_COP.1;9 Cryptographic operation – DLIES encrypt and decrypt
� FCS_COP.1;10 Cryptographic operation – ESIGN signature and signature verification
� FCS_COP.1;11 Cryptographic operation – RNG

8.3.1.3 Self-Tests
The power-up self tests and conditional tests, addressed in Section 6.1.3, meet the explicitly stated
functional requirement FPT_INTTST.1. The detailed summary specification is not repeated here.
Rationale for the explicitly stated requirement is provided in a separate section below.

8.3.2 All Security Functional Requirements for the Environment Satisfied

Table 8.7 shows that the IT Environment Security Functions in the TOE Summary Specification
(TSS) address all of the Security Environment Functional Requirements. The mappings are
discussed in detail in Section 6. As described in Section 6, all functional components map to an IT
Environment Security Function. IT Environment Security functions are:

� Key Destruction

� Access Control

� Data and Key Export

44

� Data and Key Import

� Identification and authentication

� Security Management

Table 8.7 – Mapping of Functional Requirements to IT Environment Summary Specification

No Functional
Component

Functional Requirement TOE Security Function

1 FCS_CKM.4 Cryptographic key destruction Key Destruction
2 FDP_ACC.1 Subset access control Access Control
3 FDP_ACF.1 Security attribute based access control Access Control
4 FDP_ETC.1 Export of user data without security

attributes
Data and Key Export

5 FDP_ITC.1 Import of user data without security
attributes

Data and Key Import

6 FIA_UAU.2 User authentication before any action Identification and
Authentication

7 FIA_UID.2 User identification before any action Identification and
Authentication

8 FMT_MSA.1 Management of security attributes Security Management
9 FMT_MSA.2 Secure security attributes Security Management
10 FMT_MSA.3 Static attribute initialisation Security Management
11 FMT_SMF.1 Specification of Management Functions Security Management
12 FMT_SMR.1 Security roles Security Management

8.3.2.1 Cryptographic Key Destruction
The TOE only stores keys in memory while they are in use. However, the operating system may
swap memory containing keys to disk. To zeroize those keys, the swap file must be wiped. One
way to do that is to reformat the hard drive(s) containing the swap file, a function that is performed
by the operating system. This is the method of key destruction used by the environment. The
environment key destruction capability meets functional requirement FCS_CKM.4.
8.3.2.2 Access Control
The TOE is restricted to use on Windows 2000, Windows NT, or Windows XP. These operating
systems provide access control by limiting access to files and security attributes as defined by the
system administrator. Setup of the operating system for secure operation is defined in the
Administrator and User Guides and in the Installation, Generation, and Startup Procedures for the
TOE.
Access control is required to protect sensitive information and operations. FDP_ACC.1 and
FDP_ACF.1 require the enforcement of system access controls on all system users for data and
operations performed on that data.
8.3.2.3 Data and Key Export
The TOE is restricted to use on Windows 2000, Windows NT, or Windows XP. The operating
system is responsible for ensuring that data may only be exported from the TOE to a location that is
secure and is under the control of the authenticated user. Data and key export is used to move
keys from a key generation operation or from a cryptographic operation within the TOE to a user
controlled memory or storage location.

45

Setup of the operating system for secure operation is defined in the Administrator and User Guides
and in the Installation, Generation, and Startup Procedures for the TOE.
Data and key export restrictions are required to protect keys and data from unauthorised storage or
use. FDP_ETC.1 requires that the environment enforce the operating system access control rules
when exporting user data outside of the TOE.
8.3.2.4 Data and Key Import
The TOE is restricted to use on Windows 2000, Windows NT, or Windows XP. The operating
system is responsible for ensuring that data may only be imported to the TOE from a location that is
secure and is under the control of the authenticated user. Examples of imported data may be keys,
data for hashing, data to be digitally signed, data to be verified, data to be encrypted, data to be
decrypted, seed data for random number generation or some combination of several of the above
elements. For cryptographic operations that require keys, the keys generated through FCS_CKM.1
may be used or keys may be imported from smart cards, KDCs (key distribution centers), or other
sources. In all cases, the operating system is responsible for implementing protection of keys and
data while they are under the control of the operating system or the application.
Setup of the operating system for secure operation is defined in the Administrator and User Guides
and in the Installation, Generation, and Startup Procedures for the TOE.
Data and key import restrictions are required to protect keys and data from unauthorised or
erroneous import. FDP_ITC.1 requires that the environment enforce the operating system access
control rules when importing user data into the TOE.
8.3.2.5 Identification and Authentication
The operating system is responsible for requiring identification and authentication for all users.
Windows 2000, Windows NT and Windows XP require a user ID and password for identification and
authentication for user access to any system assets or operations, including access to the TOE.
This functionality meets functional requirements FIA_UAU.2 and FIA_UID.2.
8.3.2.6 Security Management
All persistent security-related data such as keys, passwords, and security attributes reside in the
OS file system in an encrypted state to prevent disclosure. Persistent storage and protection of this
data is the responsibility of the operating system. OS protection of security attributes and assets
meets functional requirements FMT_MSA.1, FMT_MSA.2, FMT_MSA.3, and FMT_SMF.1.
The cryptographic module runs on the Microsoft Windows 2000, Windows NT, or Windows XP
Operating System and depends on the operating system for operator identification and
authentication. The environment supports the user and administrator roles. The support of the user
and administrator roles meets functional requirement FMT_SMR.1.

8.3.3 All TOE and Environment Summary Specification (TSS) Functions Necessary

Table 8.8 shows that all of the IT Security Functions in the TOE Summary Specification (TSS) and
IT Environment Summary Specification are necessary. Explanation and rationale for the mappings
are provided in Sections 6.1 and 6.2 and are repeated in Sections 8.3.1 and 8.3.2.

46

Table 8.8 – Mapping of TOE and Environment Summary Specification to Functional
Requirements

TOE/Environment Security Function Requirement Requirement Name
Key Generation (TOE) FCS_CKM.1 Cryptographic key generation
Key Destruction (Environment) FCS_CKM.4 Cryptographic key destruction
Cryptographic Operations (TOE) FCS_COP.1 Cryptographic operation
Self-tests (TOE) FPT_INTTST.1 Crypto module integrity test

FDP_ACC.1 Subset access controlAccess Control (Environment)
FDP_ACF.1 Security attribute based access control

Data and Key Export FDP_ETC.1 Export of user data without security attributes
Data and Key Import FDP_ITC.1 Import of user data without security attributes

FIA_UAU.2 User authentication before any actionIdentification and Authentication
(Environment) FIA_UID.2 User identification before any action

FMT_MSA.1 Management of security attributes
FMT_MSA.2 Secure security attributes
FMT_MSA.3 Static attribute initialisation

Security Management (Environment)

FMT_SMR.1 Security roles

8.3.4 Strength of Function Rationale

There is no threat level assigned to the TOE and no SOF claim is made, since TOE functional
requirements do not include any mechanisms that have a strength of function claim. Strength of
function claims cannot be made for cryptography, including key size and strength of algorithm. No
ISO 15408 functional or assurance family (including AVA_SOF) may be used for the purposes of
evaluating the strength of cryptographic functions or key sizes used. This is because ISO 15408
specifically does not cover the assessment of cryptographic algorithms and related techniques.

The TOE environment includes identification and authentication, for which a SOF analysis can be
performed, however, this is outside the scope of the TOE evaluation.

8.3.5 Rationale for Explicitly Stated Requirement

The explicitly stated requirement FPT_INTTST.1, Crypto module integrity test, is included because
no Common Criteria requirement exists that describes the self-test behavior of this TOE. This TOE
performs self-tests on only one of the subsystems.
CC requirements FPT_AMT.1 and FPT_TST.1 were considered, however, the TOE does not meet
these requirements because FPT_AMT.1 places requirements on the underlying abstract machine,
which is not applicable, and FPT_TST.1 applies self test requirements to the entire TOE, which is
not applicable.
In order to include the self-test functionality, which is considered important to the security of the
TOE, the explicitly stated requirement FPT_INTTST.1 was defined.

47

8.3.6 Assurance Measures Rationale

The assurance measures rationale shows how all assurance requirements were satisfied. The
rationale is provided in Table 8.9.

Table 8.9 – Assurance Evaluation Evidence

Assurance
Requirement

Evidence Rationale

ACM_CAP.2 Classes: ACM, ADO, AGD, and AVA,
Version 1.3 (NIAP_ACM_ADO_AGD_AVA)

This evidence was written to address the
configuration management documentation
for EAL2. This includes identifying the
evaluated TOE and providing a
configuration list with configuration items
that have been uniquely identified and the
method used to identify them.

ADO_DEL.1 Classes: ACM, ADO, AGD, and AVA,
Version 1.3 (NIAP_ACM_ADO_AGD_AVA)

This evidence addresses delivery
procedures for the TOE and documents
how the TOE is securely provided to the
customer.

ADO_IGS.1 Classes: ACM, ADO, AGD, and AVA,
Version 1.3 (NIAP_ACM_ADO_AGD_AVA)

This evidence addresses Installation,
Generation, and Startup procedures for
the evaluated TOE. This includes that the
TOE is installed, generated, and started
as the developers intended with the
assurance that each time it is done the
securely and the same way.

ADV_FSP.1 Class ADV: Development Documentation,
Version 1.3 (NIAP_ADV)

This evidence addresses the security
functions of the TOE. This includes
identifying and describing the external
TOE security function interfaces.

ADV_HLD.1 Class ADV: Development Documentation,
Version 1.3 (NIAP_ADV)

This evidence describes the security
functionality of the TOE and supporting
protection mechanisms implemented.

ADV_RCR.1 Class ADV: Development Documentation,
Version 1.3 (NIAP_ADV)

This evidence was written specifically to
show a correspondence analysis between
the ST and the functional specification;
between the functional specification and
the high level design; and between the
functional specification and the security
policy model.

ADV_SPM.1 Class ADV: Development Documentation,
Version 1.3 (NIAP_ADV)

This evidence provides a security policy
model for secure implementation and
operation of the TOE.

AGD_ADM.1 Classes: ACM, ADO, AGD, and AVA,
Version 1.3 (NIAP_ACM_ADO_AGD_AVA)

This evidence addresses administrator
guidance. It describes how to securely
administer the TOE and provides
references to Operating System
documentation.

48

Table 8.9 (Concluded)
Assurance
Requirement

Evidence Rationale

AGD_USR.1 Classes: ACM, ADO, AGD, and AVA,
Revision 1.3
(NIAP_ACM_ADO_AGD_AVA)

This evidence addresses user guidance.
It describes the instructions and
guidelines for secure use of the TOE and
provides references to Operating System
documentation.

ATE_COV.1 Class ATE: Test Documents, Revision 1.3
(NIAP_ATE)

This evidence addresses the
requirements for test coverage analysis
evidence. This includes showing which
security functions were tested.

ATE_FUN.1 Class ATE: Test Documents, Revision 1.3
(NIAP_ATE)

This evidence provides the test
documentation used by the vendor to test
TOE functionality.

ATE_IND.2 Class ATE: Test Documents, Revision 1.3
(NIAP_ATE)

Not applicable – this function is performed
and documented by the evaluator and the
evidence referenced is used by the
evaluator as reference only.

AVA_SOF.1 Classes: ACM, ADO, AGD, and AVA,
Revision 1.3
(NIAP_ACM_ADO_AGD_AVA)

This evidence addresses the fact that
there are no SOF claims made for the
TOE.

AVA_VLA.1 Classes: ACM, ADO, AGD, and AVA,
Revision 1.3
(NIAP_ACM_ADO_AGD_AVA)

This evidence addresses the intended
environment for the TOE and shows that
there are no exploitable obvious
vulnerabilities.

8.4 PP CLAIMS RATIONALE

Not applicable.

49

9 ACRONYMS

CC Common Criteria for IT Security Evaluation
CM Configuration Management
EAL Evaluation Assurance Level
FIPS Federal Information Processing Standard
SF Security Function
SFP Security Function Policy
ST Security Target
TOE Target of Evaluation
TSC TSF Scope of Control
TSF TOE Security Functions
TSP TOE Security Policy

50

10 REFERENCES

Standards
CCITSE Common Criteria for Information Technology Security Evaluation
FIPS PUB 140-2 Federal Information Processing Standard Publication: Security

Requirements for Cryptographic Modules

	SECURITY TARGET INTRODUCTION
	SECURITY TARGET IDENTIFICATION
	SECURITY TARGET OVERVIEW
	COMMON CRITERIA CONFORMANCE
	RELATED DOCUMENTS

	TOE DESCRIPTION
	PRODUCT TYPE
	GENERAL TOE FUNCTIONALITY
	TSF, TSF Subsystems, and TSFI
	GrooveMisc.dll (TSF-Subset) and its COM API
	cryptopp.dll and its C++ API
	Relationship Between the Two TSF Subsystems

	CRYPTOGRAPHIC OPERATIONS
	ENVIRONMENT SECURITY FUNCTIONAL REQUIREMENTS

	SECURITY ENVIRONMENT
	THREATS TO SECURITY
	ASSUMPTIONS FOR THE IT ENVIRONMENT
	THREATS TO THE SECURITY ENVIRONMENT

	SECURITY OBJECTIVES
	SECURITY OBJECTIVES FOR THE TOE
	SECURITY OBJECTIVES FOR THE ENVIRONMENT

	IT SECURITY REQUIREMENTS
	TOE SECURITY FUNCTIONAL REQUIREMENTS
	FCS – Cryptographic Support
	FPT – Protection of the TOE Security Functions

	SECURITY FUNCTIONAL REQUIREMENTS FOR THE ENVIRONMENT
	FCS – Cryptographic Support
	FDP – User Data Protection
	FIA – Identification and Authentication
	FMT – Security Management

	STRENGTH OF FUNCTION REQUIREMENT
	TOE SECURITY ASSURANCE REQUIREMENTS

	TOE SUMMARY SPECIFICATION
	TOE IT SECURITY FUNCTIONS
	Key Generation
	Cryptographic Operations
	Self-Tests

	ENVIRONMENTAL SECURITY FUNCTIONS
	Cryptographic Key Destruction
	Access Control
	Data and Key Export
	Data and Key Import
	Identification and Authentication
	Security Management

	STRENGTH OF FUNCTION REQUIREMENT
	ASSURANCE MEASURES

	PP CLAIMS
	RATIONALE
	SECURITY OBJECTIVES RATIONALE
	All Assumptions and Threats Addressed
	All Objectives Necessary

	SECURITY REQUIREMENTS RATIONALE
	All Objectives Met by Security Requirements
	All Functional Components Necessary
	Satisfaction of Dependencies
	Assurance Rationale

	TOE SUMMARY SPECIFICATION RATIONALE
	All TOE Security Functional Requirements Satisfied
	Key Generation
	Cryptographic Operations
	Self-Tests

	All Security Functional Requirements for the Environment Satisfied
	Cryptographic Key Destruction
	Access Control
	Data and Key Export
	Data and Key Import
	Identification and Authentication
	Security Management

	All TOE and Environment Summary Specification (TSS) Functions Necessary
	Strength of Function Rationale
	Rationale for Explicitly Stated Requirement
	Assurance Measures Rationale

	PP CLAIMS RATIONALE

	ACRONYMS
	REFERENCES

