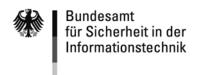
Certification Report

BSI-DSZ-CC-0459-2008

for


IBM z/OS Version 1, Release 9

from

IBM Corporation

BSI - Bundesamt für Sicherheit in der Informationstechnik, Postfach 20 03 63, D-53133 Bonn Phone +49 (0)228 9582-0, Fax +49 (0)228 9582-5477, Infoline +49 (0)228 9582-111

Certification Report V1.0 ZS-01-01-F-326 V4.1

BSI-DSZ-CC-0459-2008

IBM z/OS

Version 1, Release 9

from IBM Corporation

PP Conformance: Labeled Security Protection Profile (LSPP), Issue 1.b,

08.10.1999 and

Controlled Access Protection Profile (CAPP), Issue

1.d, 08.10.1999

Functionality: PP conformant plus product specific extensions

Common Criteria Part 2 extended

Assurance: Common Criteria Part 3 conformant

EAL 4 augmented by ALC_FLR.3

Common Criteria Arrangement

The IT product identified in this certificate has been evaluated at an accredited and licensed/ approved evaluation facility using the Common Methodology for IT Security Evaluation, Version 2.3 for conformance to the Common Criteria for IT Security Evaluation (CC), Version 2.3 (ISO/IEC 15408:2005).

This certificate applies only to the specific version and release of the product in its evaluated configuration and in conjunction with the complete Certification Report.

The evaluation has been conducted in accordance with the provisions of the certification scheme of the German Federal Office for Information Security (BSI) and the conclusions of the evaluation facility in the evaluation technical report are consistent with the evidence adduced.

This certificate is not an endorsement of the IT product by the Federal Office for Information Security or any other organisation that recognises or gives effect to this certificate, and no warranty of the IT product by the Federal Office for Information Security or any other organisation that recognises or gives effect to this certificate, is either expressed or implied.

Bonn, 29 February 2008

For the Federal Office for Information Security

Security Certified

SOGIS - MRA

Bernd Kowalski Head of Department

L.S.

This page is intentionally left blank.

Preliminary Remarks

Under the BSIG¹ Act, the Federal Office for Information Security (BSI) has the task of issuing certificates for information technology products.

Certification of a product is carried out on the instigation of the vendor or a distributor, hereinafter called the sponsor.

A part of the procedure is the technical examination (evaluation) of the product according to the security criteria published by the BSI or generally recognised security criteria.

The evaluation is normally carried out by an evaluation facility recognised by the BSI or by BSI itself.

The result of the certification procedure is the present Certification Report. This report contains among others the certificate (summarised assessment) and the detailed Certification Results.

The Certification Results contain the technical description of the security functionality of the certified product, the details of the evaluation (strength and weaknesses) and instructions for the user.

_

Act setting up the Federal Office for Information Security (BSI-Errichtungsgesetz, BSIG) of 17 December 1990, Bundesgesetzblatt I p. 2834

Contents

Part A: Certification

Part B: Certification Results

Part C: Excerpts from the Criteria

A Certification

1 Specifications of the Certification Procedure

The certification body conducts the procedure according to the criteria laid down in the following:

- BSIG²
- BSI Certification Ordinance³
- BSI Schedule of Costs⁴
- Special decrees issued by the Bundesministerium des Innern (Federal Ministry of the Interior)
- DIN EN 45011 standard
- BSI certification: Procedural Description (BSI 7125)
- Common Criteria for IT Security Evaluation (CC), Version 2.3 (ISO/IEC 15408:2005)⁵
- Common Methodology for IT Security Evaluation, Version 2.3
- BSI certification: Application Notes and Interpretation of the Scheme (AIS)
- Advice from the Certification Body on methodology for assurance components above EAL4 (AIS 34)

2 Recognition Agreements

In order to avoid multiple certification of the same product in different countries a mutual recognition of IT security certificates - as far as such certificates are based on ITSEC or CC - under certain conditions was agreed.

Act setting up the Federal Office for Information Security (BSI-Errichtungsgesetz, BSIG) of 17 December 1990, Bundesgesetzblatt I p. 2834

Ordinance on the Procedure for Issuance of a Certificate by the Federal Office for Information Security (BSI-Zertifizierungsverordnung, BSIZertV) of 07 July 1992, Bundesgesetzblatt I p. 1230

Schedule of Cost for Official Procedures of the Bundesamt für Sicherheit in der Informationstechnik (BSI-Kostenverordnung, BSI-KostV) of 03 March 2005, Bundesgesetzblatt I p. 519

Proclamation of the Bundesministerium des Innern of 10 May 2006 in the Bundesanzeiger dated 19 May 2006, p. 3730

2.1 European Recognition of ITSEC/CC - Certificates

The SOGIS-Agreement on the mutual recognition of certificates based on ITSEC became effective on 3 March 1998.

This agreement was signed by the national bodies of Finland, France, Germany, Greece, Italy, The Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom. This agreement on the mutual recognition of IT security certificates was extended to include certificates based on the CC for all evaluation levels (EAL $1-EAL\ 7$). The German Federal Office for Information Security (BSI) recognises certificates issued by the national certification bodies of France and the United Kingdom within the terms of this Agreement.

The SOGIS-MRA logo printed on the certificate indicates that it is recognised under the terms of this agreement.

2.2 International Recognition of CC - Certificates

An arrangement (Common Criteria Arrangement) on the mutual recognition of certificates based on the CC evaluation assurance levels up to and including EAL 4 has been signed in May 2000 (CC-MRA). It includes also the recognition of Protection Profiles based on the CC.

As of February 2008 the arrangement has been signed by the national bodies of: Australia, Austria, Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, India, Israel, Italy, Japan, Republic of Korea, Malaysia, The Netherlands, New Zealand, Norway, Republic of Singapore, Spain, Sweden, Turkey, United Kingdom, United States of America. The current list of signatory nations resp. approved certification schemes can be seen on the web site: http://www.commoncriteriaportal.org

The Common Criteria Arrangement logo printed on the certificate indicates that this certification is recognised under the terms of this agreement.

3 Performance of Evaluation and Certification

The certification body monitors each individual evaluation to ensure a uniform procedure, a uniform interpretation of the criteria and uniform ratings.

The product IBM z/OS, Version 1 Release 9 has undergone the certification procedure at BSI. This is a re-certification based on BSI-DSZ-CC-0377-2007. Specific results from the evaluation process based on BSI-DSZ-CC-0377-2007 were re-used.

The evaluation of the product IBM z/OS, Version 1 Release 9 was conducted by atsec information security GmbH. The evaluation was completed on 26. February 2008. atsec information security GmbH is an evaluation facility (ITSEF)⁶ recognised by the certification body of BSI.

_

⁶ Information Technology Security Evaluation Facility

For this certification procedure the sponsor and applicant is: IBM Corporation The product was developed by: IBM Corporation

The certification is concluded with the comparability check and the production of this Certification Report. This work was completed by BSI.

4 Validity of the certification result

This Certification Report only applies to the version of the product as indicated. The confirmed assurance package is only valid on the condition that

- all stipulations regarding generation, configuration and operation, as given in the following report, are observed,
- the product is operated in the environment described, where specified in the following report and in the Security Target.

For the meaning of the assurance levels and the confirmed strength of functions, please refer to the excerpts from the criteria at the end of the Certification Report.

The Certificate issued confirms the assurance of the product claimed in the Security Target at the date of certification. As attack methods may evolve over time, the resistance of the certified version of the product against new attack methods can be re-assessed if required and the sponsor applies for the certified product being monitored within the assurance continuity program of the BSI Certification Scheme. It is recommended to perform a re-assessment on a regular basis.

In case of changes to the certified version of the product, the validity can be extended to the new versions and releases, provided the sponsor applies for assurance continuity (i.e. re-certification or maintenance) of the modified product, in accordance with the procedural requirements, and the evaluation does not reveal any security deficiencies.

5 Publication

The following Certification Results contain pages B-1 to B-32.

The product IBM z/OS, Version 1 Release 9 has been included in the BSI list of the certified products, which is published regularly (see also Internet: http://www.bsi.bund.de). Further information can be obtained from BSI-Infoline +49 228 9582-111.

Further copies of this Certification Report can be requested from the developer⁷ of the product. The Certification Report may also be obtained in electronic form at the internet address stated above.

IBM Corporation
 Walter Farrell, M/S P388
 2455 South Road
 Poughkeepsie NY 12601, USA

B Certification Results

The following results represent a summary of

- the security target of the sponsor for the target of evaluation,
- · the relevant evaluation results from the evaluation facility, and
- complementary notes and stipulations of the certification body.

Contents of the certification results

1	Executive Summary	3
2	Identification of the TOE	7
3	Security Policy	9
4	Assumptions and Clarification of Scope	10
5	Architectural Information	10
6	Documentation	21
7	IT Product Testing	22
8	Evaluated Configuration	24
9	Results of the Evaluation	28
9.1	CC specific results	28
9.2	Results of cryptographic assessment	29
10	Obligations and notes for the usage of the TOE	29
11	Security Target	29
12	Definitions	30
12.	1 Acronyms	30
12.	2 Glossary	30
13	Bibliography	32

1 Executive Summary

The Target of evaluation (TOE) is IBM z/OS, Version 1 Release 9.

z/OS is a general-purpose, multi-user, multi-tasking operating system for enterprise computing systems. Multiple users can use z/OS simultaneously to perform a variety of functions that require controlled, shared access to the information stored on the system.

The Security Target [6] is the basis for this certification. It is based on the certified Protection Profile "Labeled Security Protection Profile (LSPP), Issue 1.b, 08.10.1999",[8] and "Controlled Access Protection Profile (CAPP), Issue 1.d, 08.10.1999",[9].

The TOE security assurance requirements are based entirely on the assurance components defined in part 3 of the Common Criteria (see part C or [1], part 3 for details). The TOE meets the assurance requirements of the Evaluation Assurance Level EAL 4 augmented by ALC_FLR.3.

The TOE Security Functional Requirements (SFR) relevant for the TOE are outlined in the Security Target [6], chapter 5.1. They are selected from Common Criteria Part 2 and some of them are newly defined. Thus the TOE is CC part 2 extended.

The Security Functional Requirements (SFR) relevant for the IT Environment of the TOE are outlined in the Security Target [6], chapter 5.3.

The TOE Security Functional Requirements are implemented by the following TOE Security Functions:

TOE Security Function	Addressed issue
IA	Identification and authentication:
	z/OS provides identification and authentication of users by the means of:
	an alphanumeric RACF user ID and a system-encrypted password.
	an alphanumeric RACF user ID and a PassTicket, which is a cryptographically-generated password substitute en- compassing the user ID, the requested application name, and the current date/time.
	• an x.509v3 digital certificate presented to a server application that uses System SSL or TCP/IP Application Transparent TLS (AT-TLS) to provide TLS- or SSLv3-based client authentication, and then "mapped" (using TOE functions) by that server application or by AT-TLS to a RACF user ID.
	 a KerberosTM v5 ticket presented to a server application that supports the Kerberos mechanism, and then mapped by that application through the TOE-provided GSS-API programming services or alternate functions that are also provided by the TOE (specifically the R_ticketServ, and

Certification Report BSI-DSZ-CC-0459-2008

TOE Security Function	Addressed issue	
	R_GenSec services).	
	 an LDAP bind DN, which is mapped to a RACF user ID I information in the LDAP directory, together with password. 	
	For the circumstances in which the different authentication means are used, please refer to the Security Target, chapter 6.	
AC	Access control:	
	Discretionary Access Control	
	z/OS supports access controls that are capable of enforcing access limitations on individual users and data objects. Discretionary access control (DAC) allows individual users to specify how such resources as direct access storage devices (DASDs), DASD and tape data sets, and tape volumes that are under their control are to be shared.	
	RACF makes access control decisions based on the user's identity, security attributes, group authorities, and the access authority specified with respect to the resource profile.	
	z/OS provides three DAC mechanisms:	
	The z/OS standard DAC mechanism is used for most traditional (non-UNIX) protected objects.	
	The z/OS UNIX DAC mechanism is used for z/OS UNIX objects (files, directories, etc.)	
	The z/OS LDAP LDBM DAC mechanism is used to protect LDAP objects in the LDAP LDBM back-end data store.	
	Mandatory Access Control	
	In addition to DAC, z/OS provides mandatory access control (MAC) functions that are required for LSPP mode, which impose additional access restrictions on information flow on security classification. Users and resources can have a security label specified in their profile. Security labels contain a hierarchical classification (security level), which specify the sensitivity (for example: public, internal use, or secret), and zero or more non-hierarchical security categories (for example: PROJECTA or PROJECTB).	
	The access control enforced by the TOE ensures that users can only read labeled information if their security labels dominate the information's label, and that they can only write to labeled information containers if the container's label dominates the subject's, thus implementing the Bell-LaPadula model of information flow control.	
	Note that security label checking will also occur in CAPP mode, if the administrator has configured security labels and if resources and users have labels assigned to them.	

TOE Security Function	Addressed issue	
CS <u>Communication security:</u>		
	z/OS provides means of secure communication between systems sharing the same security policy. In LSPP mode, communication within TOE parts coupled into a sysplex can be multilevel, whereas other communication channels are assigned a single security label. In CAPP mode, labels need not to be assigned and evaluated for any communication channel.	
	z/OS TCP/IP provides the means for associating labels with all IP addresses in the network. In LSPP mode, communication is permitted between any two addresses that have equivalent labels. In LSPP mode, communication between two multilevel addresses requires the explicit labeling of each packet with the sending user's label and is only permitted over XCF links within the sysplex.	
	z/OS TCP/IP provides the means to define Virtual IP addresses (VIPAs) with specific labels on a multilevel system. z/OS TCP/IP considers the user's label when choosing a source address for communications. z/OS UNIX System Services also provides the means to run up to eight instances of the z/OS TCP/IP stack which can each be restricted to a single label. Either of these approaches can be used to ensure that most communications between multilevel systems do not use a multilevel address on both ends and thereby avoid the need for explicit labelling.	
	Means implemented in z/OS for securing the communication:	
	SSL/TLS optionally with x509-based client authentication	
	IPSEC with IKE key exchange method	
	 Kerberos[™] version 5 networking protocols 	
	IBM Ported Tools (SSH v2 implementation)	
	Access controlled TCP/IP stacks	
SM	Security management:	
	z/OS provides a set of commands and options to adequately manage the TOE's security functions. Additionally, the TOE provides the capability of managing users and groups of users via the z/OS LDAP server, which can accept LDAP-format requests from a remote administrator and transform them into RACF administrative commands via its SDBM backend processing. The TOE also provides a Java class that allows Java programs to issue commands to manage users and groups. Both the LDAP SDBM and the Java class ultimately create a RACF command and pass it to RACF using a programming interface, and then RACF runs the command using the identity associated with the SDBM session or the Java program. This behaves just the same as when a local administrator issues the command, including all the same security checking and auditing.	
	The TOE recognises several authorities that are able to perform the different management tasks related to the TOE's security:	

Certification Report BSI-DSZ-CC-0459-2008

TOE Security Function	Addressed issue		
	General security options are managed by security administrators.		
	 In LSPP mode: management of MAC attributes is performed by security administrators. 		
	 Management of users and their security attributes is performed by security administrators. 		
	 Management of groups (and to some extent users) can be delegated to group security administrators. 		
	 Users can change their own passwords, their default groups, and their user names (but not their user IDs). In LSPP mode: users can choose their security labels at login, for some login methods. 		
	 Auditors manage the parameters of the audit system (a list of audited events, for example) and can analyse the audit trail. 		
	Security administrators can define what audit records are captured by the system.		
	Discretionary access rights to protected resources are managed by the owners of the applicable profiles (or UNIX objects) or by security administrators.		
AU	Auditing:		
	The TOE provides an auditing capability that allows generating audit records for security-critical events. RACF provides a number of logging and reporting functions that allow resource owners and auditors to identify users who attempt to access resources. Audit records are collected by the System Management Facilities (SMF) into an audit trail, which is protected from unauthorized modification or deletion by the DAC and (in LSPP mode) MAC mechanisms. This audit trail can reside directly in MVS data sets, or in an MVS log stream (which can be automatically off-loaded into MVS data sets), as configured by the administrator.		
OR	Object reuse:		
	The TOE ensures the re-usability of protected objects and storage before making it accessible to further use.		
SP	TOE self-protection:		
	TSF protection is based on several protection mechanisms that are supported by the underlying abstract machine the TOE is executed upon.		

Table 1: TOE Security Functions

The TOE is one instance of z/OS running on an abstract machine as the sole operating system and exercising full control over this abstract machine. This abstract machine can be provided by one of the following:

 a logical partition provided by PR/SM on an IBM System z[™] processor (z890, z990, z9[™] 109, z9[™] BC, z9[™] EC or z10[™] EC).

a certified version of z/VM[®] executing on one of the above-listed System z[™] processors.

Multiple instances of the TOE may be connected in a basic sysplex or in a parallel sysplex with the instances sharing their RACF database.

The individual TOEs can be run alone or within a network as a set of cooperating hosts, operating under and implementing the same set of security policies.

For more details concerning the software version defining the TOE, the abstract machine the TOE runs on and the user guidance documentation delivered with the TOE please refer to the remainder of this report.

For more details please refer to the Security Target [6], chapter 6.1 to 6.8.

The claimed TOE's strength of functions 'medium' (SOF-medium) for specific functions as indicated in the Security Target [6], chapter 8.3.4 is confirmed. The rating of the strength of functions does not include the crypto-algorithms suitable for encryption and decryption (see BSIG Section 4, Para. 3, Clause 2). For details see chapter 9 of this report.

The assets to be protected by the TOE are defined in the Security Target [6], chapter 3. Based on these assets the security environment is defined in terms of assumptions, threats and policies. This is outlined in the Security Target [6], chapter 3.

For the configuration of the TOE covered by this certification please refer to chapter 8 of this report or the Security Target [6], chapter 2.3.

The Certification Results only apply to the version of the product indicated in the Certificate and on the condition that all the stipulations are kept as detailed in this Certification Report. This certificate is not an endorsement of the IT product by the Federal Office for Information Security (BSI) or any other organisation that recognises or gives effect to this certificate, and no warranty of the IT product by BSI or any other organisation that recognises or gives effect to this certificate, is either expressed or implied.

2 Identification of the TOE

The Target of Evaluation (TOE) is called:

IBM z/OS, Version 1 Release 9

The following table outlines the TOE deliverables:

No	Туре	Identifier	Release	Form of Delivery	
z/0	z/OS Version 1 Release 9 Common Criteria Evaluated Base:				
z/OS Version 1 Release 9 (z/OS V1R9, program number 5694-A01)					
1	SW	z/OS V1R9 Common Criteria Evaluated Base (IBM program number 5694-A01)	V1R9	Таре	

No	Туре	Identifier	Release	Form of Delivery	
2	DOC	z/OS V1R9 Program Directory	GI10-0670-09	Hardcopy	
3	DOC	z/OS V1.9 Collection	SK3T-4269-19	CD-ROM	
4	DOC	z/OS Hot Topics Newsletter	GA22-7501-13	Hardcopy	
5	DOC	ServerPac: IYO (Installing Your Order)	n/a	Hardcopy	
6	DOC	Memo to Customers of z/OS V1.9 Common Criteria Configuration	n/a	Hardcopy	
7	DOC	z/OS V1.9 Planning for Multilevel Security and the Common Criteria	GA22-7509-07	Hardcopy	
PSF	V4 Bas	se for z/OS V4.1.0 (Program number 5655-M32)			
8	SW	IBM Print Services Facility [™] Version 4 for z/OS (PSF V4R1, program number 5655-M32)	V4R1	Таре	
9	DOC	PSF 4.1 CDROM Kit BOOK	SK3T-9927-00	CD-ROM	
10	DOC	PSF 4.1 CDROM Kit PDF	SK3T-9928-00	CD-ROM	
11	DOC	PSF for OS/390 Program Directory	GI10-0281-00	Hardcopy	
12	DOC	PSF Tiers - IBM AFP Printer	Z125-4564-18	Hardcopy	
OG	L/370 V	1.1.0 (Program number 5688-191)			
13	SW	Overlay Generation Language Version 1 (OGL V1R1, program number 5688-191)	V1R1	Таре	
14	DOC	Overlay Generation Language/370: User's Guide and Reference	S544370203	Hardcopy	
15	DOC	OGL/370 V1R1.0: Getting Started	G544369100	Hardcopy	
16	DOC	OGL/370 V1R1.0: LPS	G544369700	Hardcopy	
17	DOC	OGL: Command Summary and Quick Reference	S544370301	Hardcopy	
18	DOC	Program Directory OGL/370	GI10021201	Hardcopy	
IBM	l Ported	Tools for z/OS V1.1.2 FMID HOS1110 (Program	n number 5655-M	23, optional)	
19	SW	IBM Ported Tools for z/OS V1.1.2 (Program number 5655-M23, optional)	V1.1.2	Tape	
20	DOC	Prog Dir IBM Ported Tools for z/OS V1.1.2	GI10-0769-01	Hardcopy	
21	DOC	IBM Ported Tools for z/OS License Information	GA22-7986-02	Hardcopy	
Ada	Additional Media				
22	SW	APAR OA22518 (PTF UA37426) and APAR PK57688 (PTF UK32719) obtained electronically from ShopzSeries (https://www.ibm.com/software/shopzseries)	n/a	Electronic	

Table 2: Deliverables of the TOE

Please note that:

 The same software elements are used in the LSPP and CAPP mode of operation, except as otherwise noted. The mode of operation is defined by the configuration of the labeling-related options in RACF. Details are described in [10].

 Only the most important CC guidance documentation is listed above. More information on guidance documents (which are also shipped together with the TOE) and which have to be followed can be found in chapter 6 of this report.

3 Security Policy

The security policy is expressed by the set of security functional requirements and implemented by the TOE. It covers the following issues:

The TOE implements several policies which are specified in the Security Target by the TOE security functional requirements. Those policies are:

- An Identification & Authentication Policy that is defined by the SFRs: FIA_ATD.1, FMT_MTD.1(3)⁸, FMT_REV.1(1), FMT_MTD.1(4), FMT_MTD.1(5), FMT_MTD.1(6), FMT_MTD.1(8), FIA_UAU.1, FIA_UAU.5, FIA_UAU.7, FIA_SOS.1, FIA_UID.1, FIA_USB.1
- Access Control Policies:
 - A Mandatory Access Control Policy defined by the SFRs: FDP_IFC.1, FDP_IFF.2, FDP_ETC.1, Note 1, FDP_ITC.1, FDP_ITC.2, FIA_ATD.1, FIA_USB.1, FMT_MSA.1(2), FMT_MSA.3(2), FMT_REV.1(2), FPT_TDC.1
 - A Discretionary Access Control Policy that is defined by the SFRs: FDP_ACC.1, FDP_ACF.1(1), FDP_ACF.1(2), FDP_ACF.1(3), FIA_ATD.1, FIA_USB.1, FMT_MSA.1(1), FMT_MSA.3(1), FMT_REV.1(2)
- An Audit Policy defined by the SFRs:
 FAU_GEN.1, FAU_GEN.2, FAU_SEL.1, FAU_SAR.1, FAU_SAR.2,
 FAU_SAR.3, FAU_STG.1, FAU_STG.3, FAU_STG.4, FIA_USB.1,
 FMT_MTD.1(1), FMT_MTD.1(2), FPT_STM.1
- A Trusted Channel Policy defined by the SFRs: FDP_UCT.1, FDP_UIT.1, FMT_MTD.1(6), FTP_ITC.1

In addition to the Security Target the Security Policy of the TOE has been described in a separate Informal TOE security policy model as required by the CC assurance component ADV_SPM.1.

_

⁸ The number in brackets denotes the nth iteration of the SFR

4 Assumptions and Clarification of Scope

The assumptions defined in the Security Target and some aspects of threats and organisational security policies are not covered by the TOE itself. These aspects lead to specific security objectives to be fulfilled by the TOE-Environment. The following topics are of relevance: OE.INSTALL, OE.PHYSICAL, OE.CREDEN, OE.HW_SEP, OE.HW_CRYPTO and OE.CLASSIFICATION (LSPP mode only). Details can be found in the Security Target [6], chapter 4.2.

5 Architectural Information

The Target of Evaluation (TOE) is the z/OS operating system with the software components as listed in chapter 2 of this report. z/OS is a general-purpose, multi-user, multi-tasking operating system for enterprise computing systems. Multiple users can use z/OS simultaneously to perform a variety of functions that require controlled, shared access to the information stored on the system.

For purposes of evaluation, the TOE is seen as one instance of z/OS running on an abstract machine as the sole operating system and exercising full control over this abstract machine. This abstract machine can be provided by one of the following:

- a logical partition provided by PR/SM on an IBM System z[™] processor (z890, z990, z9 109, z9 BC, z9 EC or z10 EC)
- a certified version of z/VM[®] executing on one of the above-listed System z[™] processors.

The abstract machine itself is not part of the TOE, rather, it belongs to the TOE environment. Nevertheless the correctness of separation and memory protection mechanisms implemented in the abstract machine is analyzed as part of the evaluation since those functions are crucial for the security of the TOE.

The TOE environment, as part of the System z processor, also includes specific hardware functions that provide support for the cryptographic operations involved in communications security and for the digital signature operations involved with X.509v3 digital certificates.

Multiple instances of the TOE may be connected in a basic sysplex or in a parallel sysplex with the instances sharing their RACF® database.

The platforms selected for the evaluation consist of IBM products that are available when the evaluation has been completed and will remain available for a substantial period of time afterward.

The individual TOEs can be run alone or within a network as a set of cooperating hosts, operating under and implementing the same set of security policies.

Transmission Control Protocol/Internet Protocol (TCP/IP) network services, connections and communication that occur outside of a sysplex are restricted to one security label; that is, each system regards its peers as single-label hosts. Other network communication is disallowed, with the exception of the Job Entry System 2 (JES2) Network Job Entry (NJE) protocol.

Most of the TOE security functions (TSF) are provided by the z/OS operating system Base Control Program (BCP) and the Resource Access Control Facility (RACF), a z/OS component that is used by different services as the central instance for identification and authentication and for access control decisions.

z/OS comes with management functions that allow configuring of the TOE security functions to tailor them to the customer's needs. Some elements have been included in the TOE that do not provide security functions. These elements run in authorized mode, so they could compromise the TOE if they do not behave properly. Because these elements are essential for the operation of many customer environments, the inclusion of these elements subjects them to the process of scrutiny during the evaluation and ensures that they may be used by customers without affecting the TOE's security status.

In its evaluated configuration, the TOE allows two modes of operation: LSPP-compliant and CAPP-compliant. In both modes, the same software elements are used. The two modes have different RACF settings with respect to the use of security labels. All other configuration parameters are identical in the two modes.

Intended Method of Use

z/OS provides a general computing environment that allows users to gain controlled access to its resources in different ways:

- online interaction with users through Time Sharing Option Extensions (TSO/E) or z/OS UNIX System Services
- batch processing (JES2)
- services provided by started procedures or tasks
- daemons and servers utilizing z/OS UNIX System Services that provide similar functions as started procedures or tasks but based on UNIX interfaces

These services can be accessed by users local to the computer systems or accessing the systems via network services supported by the evaluated configuration.

All users of the TOE are assigned a unique user identifier (user ID). This user ID, which is used as the basis for access control decisions and for accountability, associates the user with a set of security attributes. In most cases the TOE authenticates the claimed identity of a user before allowing this user to perform any further security-relevant actions. Exceptions to this authentication policy include:

1. Pre-specified identities:

- The authorized administrator can specify an identity to be used by server or daemon processes or system address spaces, which may be started either automatically or via system operator commands;
- b. The authorized administrator may configure a trusted HTTP server to access selected data under a specified identity, rather than the identity of the end user making the request. The HTTP server may optionally authenticate the user in this case, or may serve the data to anyone asking for it, if the administrator has determined that such anonymous access is appropriate.
- 2. Users are allowed to execute programs that accept network connections on ports the user has access to. In this case the untrusted program has no knowledge about the external "user" and cannot perform authentication. The program executes with the rights of the z/OS user that started it, and any data access occurs using this user's authenticated identity.

The TOE provides mechanisms for both mandatory and discretionary access control. The Security Target describes two modes of operation: one with discretionary access control only (compliant to the requirements of the "Controlled Access Protection Profile (CAPP), Issue 1.d, 08.10.1999" [9]) and one with both discretionary and mandatory access control where the mandatory access control is fully enabled for all subjects and objects (compliant to the requirements of the "Labeled Security Protection Profile (LSPP), Issue 1.b, 08.10.1999" [8]). In commercial environments it is often useful to activate only part of the mandatory access control functions required in the Security Target for full compliance to LSPP. While such a mode may be useful for specific environments and the functions used have been evaluated, the claims about information flow control made in the Security Target for the LSPP mode may not hold completely when only part of the mandatory access control functions are configured.

All TOE resources are under the control of the TOE. The TOE mediates the access of subjects to TOE-protected objects. Subjects in the TOE are called tasks. Tasks are the active entities that can act on the user's behalf. Data is stored in named objects. The TOE can associate a set of security attributes with each named resource, which includes the description of the access rights to that object and (in LSPP mode) a security label.

Objects are owned by users, who are assumed to be capable of assigning discretionary access rights to their objects in accordance with the organizational security policies. Ownership of named objects can be transferred under the control of the access control policy. In LSPP mode, security labels are assigned by the TOE, either automatically upon creation of the object or by the trusted system administrator. The security attributes of users, data objects, and objects through which the information is passed are used to determine if information may flow through the system as requested by a user.

Apart from normal users, z/OS recognizes administrative users with special authorizations. These users are trusted to perform system administration and maintenance tasks, which includes configuration of the security policy enforced by the z/OS system and attributes related to it. Authorizations can be delegated to other administrative users by updating their security attributes. The TOE also recognizes the role of an auditor, who uses the auditing system provided by z/OS to monitor the system usage according to the organizational security policies.

The TOE is intended to operate in a networked environment with other instantiations of the TOE as well as other well-behaved client systems operating within the same management domain. All of those systems need to be configured in accordance with a defined common security policy.

Summary of Security Features

The primary security features of the product are:

- identification and authentication
- discretionary access control
- in LSPP mode: mandatory access control and support for security labels
- auditing
- object re-use
- security management
- communications security
- TSF protection

These primary security features are supported by domain separation and reference mediation, which ensure that the features are always invoked and cannot be bypassed.

Identification and authentication

z/OS provides identification and authentication of users by the means of

- an alphanumeric RACF user ID and a system-encrypted password.
- an alphanumeric RACF user ID and a PassTicket, which is a cryptographically-generated password substitute encompassing the user ID, the requested application name, and the current date/time.
- an x.509v3 digital certificate presented to a server application that uses System SSL or TCP/IP Application Transparent TLS (AT-TLS) to provide TLS- or SSLv3-based client authentication, and then "mapped" (using TOE functions) by that server application or by AT-TLS to a RACF user ID.
- a Kerberos v5 ticket presented to a server application that supports the Kerberos mechanism, and then mapped by that application through the

TOE-provided GSS-API programming services or alternate functions that are also provided by the TOE (specifically the R_ticketServ, and R_GenSec services). These functions enable the application server to validate the Kerberos ticket, and thus the authentication of the principal. The application server then translates (or maps) the Kerberos principal (using the TOE provided function of R_userMap) to a RACF user ID.

 an LDAP bind DN, which is mapped to a RACF user ID by information in the LDAP directory, together with a password. The LDAP server then passes the derived RACF user ID, and the password, to RACF to complete the authentication process.

In the evaluated configuration, all human users are assigned a unique user ID. This user ID supports individual accountability. The TOE security functions authenticate the claimed identity of the user by verifying the password (or other mechanism, as listed above) before allowing the user to perform any actions that require TSF mediation, other than actions that aid an authorized user in gaining access to the TOE.

In some cases of external access to the system, such as the HTTP server, FTP server, or LDAP server, an installation may decide to define a user ID that is used for access checking of selected resources for users that have not been authenticated. This allows an installation to define resources unauthenticated users may access using that server via an appropriate client program. Users may still authenticate to the server using their user ID and password (or other authentication mechanism as above) to access additional resources they have been assigned access to.

The required password quality can be tailored to the installation's policies using various parameters. When creating users, administrators are required to choose an initial password that must usually be changed by the user during initial logon.

Discretionary access control

z/OS supports access controls that are capable of enforcing access limitations on individual users and data objects. Discretionary access control (DAC) allows individual users to specify how such resources as direct access storage devices (DASDs), DASD and tape data sets, and tape volumes that are under their control are to be shared.

RACF makes access control decisions based on the user's identity, security attributes, group authorities, and the access authority specified with respect to the resource profile.

z/OS provides three DAC mechanisms.

- 1. The z/OS standard DAC mechanism is used for most traditional (non- UNIX) protected objects.
- 2. The z/OS UNIX DAC mechanism is used for z/OS UNIX objects (files, directories, etc.)

3. The z/OS LDAP LDBM DAC mechanism is used to protect LDAP objects in the LDAP LDBM back-end data store.

z/OS standard DAC mechanism

Access types that can be granted are NONE, EXECUTE, READ, UPDATE, CONTROL, and ALTER, which form a hierarchical set of increasing access authorities.

Access authorities to resources are stored in profiles. Discrete profiles are valid for a single, named resource and generic profiles are applicable to a group of resources, typically with similar names. For access permission checks, RACF always chooses the most specific profile for a resource. Profiles can have an access control list associated with them that contains a potentially large number of entries for different groups and users, thus allowing the modeling of complex, fine-grained access controls.

Profiles are assigned to a number of resources within z/OS. This Security Target defines the resource types analyzed during the evaluation. RACF profiles are also used to manage and control privileges in z/OS and resources of subsystems that are not part of the evaluated configuration (e. g. DB2, CICS, JES3).

Access rights for subjects to resources can be set by the profile owner and by the security administrator.

z/OS UNIX DAC mechanism

z/OS implements POSIX-conformant access control for such named objects in the UNIX realm as UNIX file system objects and UNIX inter-process communication (IPC) objects. Access types for UNIX file system objects are read, write, and execute/search, and read and write for UNIX IPC objects. z/OS file system objects provide either access control based on the permission bits associated with a file, or based on access control lists, which are upward-compatible with the permission bits algorithm and implement the recommendations from Portable Operating System Interface for UNIX (POSIX) 1003.1e draft 17.

z/OS LDAP DAC mechanism

The z/OS LDAP server supports several back-end data stores, two of which (LDBM, SDBM) can be used in the evaluated configuration. The SDBM backend allows RACF administration by remote administrators for systems configured in CAPP mode. The LDBM back-end allows storage of customer data in either CAPP or LSPP mode, and this back-end supports a standard LDAP access control mechanism to control which authenticated users can access which data. It also supports the possibility of "public" data, accessed by unauthenticated users, when the administrator has configured this kind of data and access.

Mandatory access control and support for security labels in LSPP mode

In addition to DAC, z/OS provides mandatory access control (MAC) functions that are required for LSPP mode, which impose additional access restrictions on information flow on security classification. Users and resources can have a security label specified in their profile. Security labels contain a hierarchical classification (security level), which specify the sensitivity (for example: public, internal use, or secret), and zero or more non-hierarchical security categories (for example: PROJECTA or PROJECTB).

The access control enforced by the TOE ensures that users can only read labeled information if their security labels dominate the information's label, and that they can only write to labeled information containers if the container's label dominates the subject's, thus implementing the Bell-LaPadula model of information flow control. The system can also be configured to allow write-down for certain authorized users.

MAC checks are performed before DAC checks.

Note that security label checking will also occur in CAPP mode, if the administrator has configured security labels and if resources and users have labels assigned to them. The exact effects (e.g., whether write-down can occur) depend on several RACF options, and so the behavior may differ from that imposed by an LSPP configuration, which mandates the setting of certain options.

Users with clearance for multiple security classifications can choose their label at login time in TSO and for batch jobs submitted to JES, with appropriate defaults assigned if no labels are chosen. The choice may be restricted by the label assigned to the point of access (the logical or physical device the user has used to authenticate, e. g. the ID of the terminal, the IP address, or the ID of the job entry station).

TCP/IP applications that process user login requests must either be restricted to a single label or must restrict the user label by the label assigned to the point of access.

The z/OS LDAP server has no mechanisms in the LDBM back-end to perform MAC checking. Instead, each z/OS LDAP server must run with a single security label, matching the classification of the data in the LDBM database. TCP/IP processing will then ensure that only users running with that security label will have access to the LDAP data, thus fulfilling the required MAC checking. As needed, customers may configure multiple z/OS LDAP servers, each running with a single security label, and users must connect to the appropriate server that matches their own security label when they want to access the data.

Auditing

The TOE provides an auditing capability that allows generating audit records for security-critical events. RACF provides a number of logging and reporting functions that allow resource owners and auditors to identify users who attempt

to access resources. Audit records are collected by the System Management Facilities (SMF) into an audit trail, which is protected from unauthorized modification or deletion by the DAC and (in LSPP mode) MAC mechanisms.

The system can be configured to halt on exhaustion of audit trail space to prevent audit data loss. Operators are warned when audit trail space consumption reaches a predefined threshold.

RACF always generates audit records for such events as unauthorized attempts to access the system or changes to the status of the RACF database. The security administrator, auditors, and other users with appropriate authorization can configure which additional optional security events are to be logged. In addition to writing records to the audit trail, messages can be sent to the security console to immediately alert operators of detected policy violations. RACF provides SMF records for all RACF-protected resources (either "traditional" or z/OS UNIX-based) as well as for LDAP-based resources.

Auditors can unload selected parts of the SMF database for further analysis into human-readable formats or for upload to a query or reporting package, such as DFSORT TM .

Object re-use functionality

Reuse of protected objects and of storage is handled by various hardware and software controls, and by administrative practices.

All memory content of non-shared page frames is cleared before making it accessible to other address spaces or data spaces. DASD data sets can be purged during deletion with the RACF ERASE option and tape volumes can be erased on return to the scratch pool. All resources allocated to UNIX objects are cleared before reuse. Other data pools are under strict TOE control and cannot be accessed directly by normal users.

Security management

z/OS provides a set of commands and options to adequately manage the TOE's security functions. Additionally, the TOE provides the capability of managing users and groups of users via the z/OS LDAP server, which can accept LDAP-format requests from a remote administrator and transform them into RACF administrative commands via its SDBM backend processing. The TOE recognizes several authorities that are able to perform the different management tasks related to the TOE's security:

- General security options are managed by security administrators.
- In LSPP mode: management of MAC attributes is performed by security administrators.
- Management of users and their security attributes is performed by security administrators. Management of groups (and to some extent users) can be delegated to group security administrators.

 Users can change their own passwords, their default groups, and their user names (but not their user IDs).

- In LSPP mode: users can choose their security labels at login, for some login methods. (Note: this also applies in CAPP mode if the administrator chooses to activate security label processing.)
- Auditors manage the parameters of the audit system (a list of audited events, for example) and can analyze the audit trail.
- Security administrators can define what audit records are captured by the system.
- Discretionary access rights to protected resources are managed by the owners of the applicable profiles (or UNIX objects) or by security administrators.

Communications Security

z/OS provides means of secure communication between systems sharing the same security policy. In LSPP mode, communication within TOE parts coupled into a sysplex can be multilevel, whereas other communication channels are assigned a single security label. In CAPP mode, labels need not to be assigned and evaluated for any communication channel.

z/OS TCP/IP provides the means for associating labels with all IP addresses in the network. In LSPP mode, communication is permitted between any two addresses that have equivalent labels. In LSPP mode, communication between two multilevel addresses requires the explicit labeling of each packet with the sending user's label and is only permitted over XCF links within the sysplex.

z/OS TCP/IP provides the means to define Virtual IP addresses (VIPAs) with specific labels on a multilevel system. z/OS TCP/IP considers the user's label when choosing a source address for communications. z/OS UNIX System Services also provides the means to run up to eight instances of the z/OS TCP/IP stack which can each be restricted to a single label. Either of these approaches can be used to ensure that most communications between multilevel systems do not use a multilevel address on both ends and thereby avoid the need for explicit labelling.

In its evaluated configuration, z/OS supports trusted communication channels for TCP/IP connections. The confidentiality and integrity of network connections are assured by Secure Sockets Layer / Transport Layer Security (SSL/TLS) encrypted communication for TCP/IP connections, which can be used explicitly by applications or applied transparently to their communications without changing the applications using it (assuming the applications that do not make use of the SSL/TLS capabilities that allow clients to authenticate to the system using a client-supplied X.509 digital certificate. If applications accept client certificates then they do need to have specific SSL/TLS-related processing within the applications.).

In addition to the SSL/TLS connection, z/OS also supports the IP Security (IPSec) protocol with Internet Key Exchange (IKE) as the key exchange method. This is an additional way to set up a trusted channel to another trusted IT product for IP-based connections.

z/OS also supports KerberosTM version 5 networking protocols, via the Integrated Security Services Network Authentication Service component (z/OS Network Authentication Service) These protocols enable both the client and the server to mutually authenticate. This authentication mechanism can be utilized with the GSS-API services provided by the z/OS Network Authentication Service to provide security services to applications. These services enable encrypted communications channels between clients and servers that may reside on the same or on different systems.

z/OS also supports, via the optional add-on product IBM Ported Tools for z/OS, the SSH v2 protocol and the ssh-daemon provided services of ssh (secure shell), scp (secure copy), and sftp (secure ftp) TCP/IP-based communication can be further controlled by the access control function for TCP/IP connections, which allows controlling of the connection establishment based on access to the TCP/IP stack in general, individual network address and individual ports on a per-application or per-user basis.

z/OS provides also a variety of network services, all of which use RACF for identification, authentication, and access control. In the evaluated configuration, terminal services are provided by TN3270, telnet, rlogin, rsh, and rexec. File transfer services are provided by the File Transfer Protocol (FTP), sftp and scp, Web serving functions are provided by the z/OS HTTP Server.

TSF protection

TSF protection is based on several protection mechanisms that are provided by the underlying abstract machine:

- Privileged processor instructions are only available to programs running in the processor's supervisor state
- Semi-privileged instructions are only available to programs running in an execution environment that is established and authorized by the TSF
- While in operation, all address spaces, as well as the data and tasks contained therein, are protected by the memory protection mechanisms of the underlying abstract machine

The TOE's address space management ensures that programs running in problem state cannot access protected memory or resources that belong to other address spaces.

Access to system services – through supervisor call (SVC) or program call (PC) instructions, for example – is controlled by the system, which requires that subjects who want to perform security-relevant tasks be authorized appropriately.

Certification Report BSI-DSZ-CC-0459-2008

The hardware and firmware components that provide the abstract machine for the TOE are required to be physically protected from unauthorized access. The z/OS Base Control Program mediates all access to the TOE's hardware resources themselves, other than program-visible CPU instruction functions.

Tools are provided in the TOE environment to allow authorized administrators to check the correct operation of the underlying abstract machine.

In addition to the protection mechanism of the underlying abstract machine, the TOE also uses software mechanisms like the authorized program facility (APF) or specific privileges for programs in the UNIX system services environment to protect the TSF.

High-level Design

The subsystems considered in the high-level design of the TOE are the following:

- 1. Base Control Program (BCP)
- 2. System Management Facilities (SMF)
- 3. System REXX
- 4. Security Server (Resource Access Control Facility RACF)
- 5. System Operations
- 6. Communication Server (IP and SNA)
- DFSMS System Managed Storage
- 8. Job Entry Subsystem 2 JES2
- 9. TSO/E
- 10. z/OS UNIX System Services
- 11. Print Services Facility (PSF)
- 12. Parallel Sysplex
- 13. Cryptographic Services
- 14. Hardware Configuration Definition (HCD) and Hardware Configuration Manager (HCM)
- 15. Resource Management Facility RMF
- 16. SDSF
- 17. System SSL
- 18. Network File System
- 19. HTTP Server
- 20. IBM Health Checker
- 21. IBM Tivoli Directory Server for z/OS (LDAP)

- 22. Network Authentication Service (Kerberos)
- 23. PKI Services
- 24. OpenSSH
- 25. Common Information Model (CIM) Server
- 26. EIM ICTX LDAP backend for remote authorization and remote auditing

6 Documentation

The evaluated documentation as outlined in table 2 is being provided with the product to the customer. This documentation together with the Security Target itself is the most important documentation to securely use the TOE in the evaluated configuration.

Additional obligations and notes for secure usage of the TOE as outlined in chapter 10 of this report have to be followed.

7 IT Product Testing

Test Configuration

The Security Target requires the software packages comprising the TOE to be run on an abstract machine implementing the z/Architecture machine interface as defined in the "z/Architecture Principles of Operation". The hardware platforms implementing this abstract machine are:

- IBM zSeries model z890, optionally with CryptoExpress2 card or PCIXCC and PCICA crypto cards
- IBM zSeries model z990, optionally with CryptoExpress2 card or PCIXCC and PCICA crypto cards
- IBM System z9 109, z9 BC, or z9 EC, optionally with CryptoExpress2 card.
- IBM System z10 EC, optionally with CryptoExpress2 card.

The TOE may be running on those machines within a logical partition provided by a certified version of PR/SM. In addition, the TOE may run on a virtual machine provided by a certified version of z/VM.

For the peripherals that can be used with the TOE, please refer to the Security Target, chapter 2.3.2.

IBM has tested the platforms (hardware and combinations of hardware with PR/SM and/or z/VM) for z/OS individually for their compliance to the z/Architecture using the Systems Assurance Kernel (SAK) suite of tests. These tests ensure that every platform provides the abstract machine interface that z/OS requires.

The test systems were running z/OS Version 1 Release 9 in the evaluated configuration. Due to the massive amount of tests, testing was performed throughout the development of the TOE. To ensure proper testing of all security relevant behaviour of the TOE, the evaluators verified that all tests that might have been affected by any security-relevant change introduced late in the development cycle had been run on the evaluated configuration.

Depth/Coverage of Testing

The developer has done substantial functional testing of all externally visible interfaces (TSFI). Internal interfaces of the high-level design have been covered by direct and indirect testing. The evaluators repeated a subset of the developer tests and conducted additional independent tests and penetration tests.

Summary of Developer Testing

Test configuration:

The sponsor/developer has performed the tests on the platforms defined above. The software was installed and configured as required in the guidance documents (refer to chapter 6) and the Security Target.

Testing approach:

The sponsor/developer conducts extensive testing for every release of z/OS. Functional Verification Testing (FVT) and System Verification Testing (SVT) are performed by independent test teams with testers being independent from developers. A special collection of tests was compiled to explicitly deal with the security functionality as claimed in the Security Target.

For components providing cryptographic functions, testing was performed with and without hardware cryptographic support in order to test the correct usage of the hardware cryptographic functions, if present, and the correct implementation of the software implementation within the TOE.

Testing results:

All actual test results were consistent with the expected test results.

Summary of Evaluator Testing Effort

Test configuration:

The evaluator used the same test environment as the developer. The configuration of the TOE was conformant to the Security Target requirements and have been set up according to the guidance documents.

Testing approach:

The evaluation facility decided to re-run a subset of the developer tests focusing on functionality newly introduced since the previous evaluation. In addition evaluator tests were defined and executed by the evaluation facility.

Testing results:

All actual test results were consistent with the expected test results.

Evaluator penetration testing:

The evaluator has devised penetration tests based on the developer vulnerability analysis as well as on his own independent vulnerability analysis.

The evaluator has used the information contained in the evaluation evidence to derive penetration tests. This time the evaluator deliberately selected very different penetration test areas compared to the previous evaluation.

The evaluator penetration tests can be classified into the following categories:

- Network vulnerability testing
- Fuzzy testing of interfaces

Certification Report BSI-DSZ-CC-0459-2008

- Resource exhaustion test
- Penetration test to get indirect access to read protected storage

The penetration testing showed no vulnerabilities which are exploitable with the attack potential assumed for EAL4 in the intended operating environment.

8 Evaluated Configuration

The Target of Evaluation is IBM z/OS, Version 1 Release 9. The TOE is software only. The items listed in chapter 2 of this report represent the TOE.

This following configuration of the TOE is covered by this certification:

The z/OS V1R9 Common Criteria Evaluated Base package, and (if used) IBM Ported Tools for z/OS) must be installed according to the directions delivered with the media and configured according to the instructions in [10].

Installations may choose not to use any of the elements delivered within the ServerPac, but are required to install, configure, and use at least the RACF component of the z/OS Security Server element.

In addition, any software outside the TOE may be added without affecting the security characteristics of the system, if it cannot run:

- in supervisor state
- as APF-authorized
- with keys 0 through 7
- with UID(0),
- with authority to FACILITY resources BPX.DAEMON, BPX.SERVER, or BPX.SUPERUSER
- with authority to UNIXPRIV resources

This explicitly excludes replacement of any element in the ServerPac providing security functions relevant to this evaluation by other third-party products.

Note: The evaluated software configuration is not invalidated by installing and operating other appropriately certified components that possibly run authorised. However the evaluation of those components must show that the component and the security policies implemented by the component do not undermine the security policies described in this document.

The IBM Tivoli Directory Server for z/OS (FMID HRSL380) component may be used as the LDAP server, but:

- client authentication via digital certificates has not been evaluated for LDAP and cannot be used in the evaluated configuration;
- client authentication using the Kerberos mechanism has not been evaluated for LDAP and cannot be used in the evaluated configuration.

authentication via passwords stored in LDAP cannot be used. Authentication
must occur using RACF passwords. Note that for LDBM an LDAP bind DN is
specified when binding to the server, but the password specified must be for
the RACF user ID associated with that LDAP bind DN by the LDAP
administrator:

- only the LDBM and ICTX backends may be used in LSPP mode. In CAPP mode either LDBM, SDBM, or ICTX backends may be used. Other LDAP backend configurations have not been evaluated and must not be used.
- (LSPP only) Each running instance of the LDAP server must run with a single, non-SYSMULTI, non-SYSNONE, security label. Multiple server instances may run at the same time, with the same or different security labels.

Note: z/OS also ships an older LDAP Server component as part of the Integrated Security Services element of z/OS. That server was not part of this evaluation, and must not be used in the evaluated configuration.

Each running instance of the HTTP server must run with a security label that is neither SYSMULTI nor SYSNONE.

SSHD (from IBM Ported Tools for z/OS), may be used, but if used:

- must be configured to use protocol version 2 and either 3DES or one of the AES-based encryption suites,
- must be configured in privilege separation mode, and
- must be configured to allow only password-based authentication of users.
 Rhost-based and public-key based user authentication may not be used in the evaluated configuration. In LSPP mode SSHD should be configured with the SYSMULTI security label.

The Network Authentication Service component (FMID HSWK360) of the Integrated Security Services component, if used, and applications exploiting it, must satisfy the following constraints:

- The Network Authentication Service must use the SAF (RACF) registry. The NDBM registry is not a valid configuration for this evaluation.
- Cross Realm Trust relationships with foreign Kerberos realms is allowed, but the foreign KDC must be capable of supporting the same cipher as does the z/OS KDC.
- In order to ensure strong cryptographic protection of Kerberos tickets, DES3 or AES should be utilized by the z/OS KDC and any KDC participating in a cross-realm trust relationship with the z/OS KDC. DES should only be used in network environments where the threat of cryptographic attacks against the tickets and Kerberos-protected sessions is deemed low enough to justify the use of these weaker encryption protocols.
- Applications supporting Kerberos may use a combination of application specific protocols and the GSSAPI functions or the equivalent native

platform callable services (the SAF R_TicketServ and R_GenSec callable services) to authenticate clients, and in client-server authentication. Only the Kerberos mechanism may be used by applications that utilise GSS-API or the equivalent native platform functions. The GSS-API and R_GenSec services also enable the encryption of sensitive application messages passed via application specific protocols. These services enable the secure communication between client and server applications. The GSSAPI services include the message integrity and privacy functions that validate the authenticity and secure the communications between clients and servers.

BSI-DSZ-CC-0459-2008

The Network File System (NFS) Server (FMID HDZ11US) may be used, but only in CAPP configurations. NFS must not be used in LSPP configurations. Kerberos-based authentication must be used. The server must be configured with the SAF or SAFEXPORT option, to ensure that all file and directory access (except possibly directory mounting) has appropriate RACF security checks made.

SSL (Secure Sockets Layer) processing, if used, must use SSLv3 protocols. SSL and TLS (Transport Layer Security), if used, must use use either triple DES (168-bit keys), AES (128- or 256-bit keys), or RC4 (128-bit keys) encryption.

Any application performing client authentication using client digital certificates over SSL or TLS must be configured to use RACF profiles in the RACDCERT or DIGTRING classes or PKCS#11 tokens in ICSF to store the keyrings that contain the application private key and the allowed Certificate Authority (CA) certificates that may be used to provide the client certificates that the application will support. The use of gskkyman for this purpose is not part of the evaluated configuration.

Any client that is delivered with the product that executes with the user's privileges must be used with care, since the TSF can not protect those clients from potentially hostile programs. Passwords a user enters into those client programs that those clients use to pass to the corresponding server to authenticate the user may potentially be spoofed by hostile programs running in the user's address space. This includes client programs for telnet, TN3270, ftp, r-commands, ssh, all Idap utilities and Kerberos administration utilities that require the user to enter his password. When using those client programs the user should take care that no untrusted potentially hostile program has been called during his session.

The following elements and element components cannot be used in an evaluated system, either because they violate the security policies stated in this Security Target or because they have been removed from the evaluated configuration due to time and resource constraints of the evaluation. As they are part of the base system, either they must be not configured for use or they must be deactivated, as described in [10], chapter 7:

 All Bulk Data Transfer (BDT) elements: BDT, BDT File-to-File, and BDT Systems Network Architecture (SNA) NJE Connection Manager

 The Distributed Computing Environment (DCE) component (FMID HRSS190) of the Integrated Security Services element

- DCE Base Services (FMID HMB3190)
- The DFS[™] Server Message Block (SMB) and DFS DCE-DFS (FMID H0H2390) components of the Distributed File Service element
- The Enterprise Identity Mapping component of the Integrated Security Services element
- Infoprint® Server
- JES3
- The Advanced Program-to-Program Communication/ Multiple Virtual Storage (APPC/MVS) component of the BCP
- Process Manager component from the UNIX System Services Element
- The z/OS LDAP Server component of the Integrated Security Services element (FMID JRSL38A). For LDAP functionality in the evaluated configuration use the IBM Tivoli Directory Server for z/OS (FMID HRSL380) component of z/OS instead.

The use of TCP/IP communication for JES2 NJE has not been part of the evaluation and must not be used in the evaluated configuration.

The JES2 Execution Batch Monitor (XBM) facility has not been part of the evaluation and must not be used in the evaluated configuration.

The RACF Remote Sharing Facility has not been part of the evaluation and must not be used in the evaluated configuration.

The Data Facility Storage Management Subsystem (DFSMS) Object Access Method for content management type applications must not be used.

For the Communications Server:

- The z/OS FTP server and client, and the z/OS TN3270 server, support both manually-configured SSL/TLS, or AT-TLS. This evaluation has considered only AT-TLS configurations, and as a result manual configuration of those components to use SSL or TLS is not allowed for evaluated configurations.
- The z/OS FTP server and client can support either the protocols from the draft standard for securing FTP with TLS/SSL, or the protocols from the formal RFC 4217 level of Security FTP with TLS/SSL. This evaluation has considered only the formal RFC 4217 level of support, and as a result that option must be used in the evaluated configuration.
- The following applications must not be used in LSPP configurations, as noted in the Communications Server IP Configuration Guide: BINL, DHCP PXE, HOMETEST command, IUCV, LPD, LPQ command, LPR command, LPRM command, LPRSET command, NCPROUTE, NPF, Portmapper RPCBIND, SMTP, SNMP NetView client, TELNET client command,

TESTSITE command, TNF, VMCF, z/OS UNIX DNS name server (BIND 4), z/OS UNIX Network SLAPM2 subagent, z/OS UNIX OMPROUTE SNMP subagent, z/OS UNIX popper, z/OS UNIX RSVP agent, z/OS UNIX SNMP client command, z/OS UNIX SNMP server and agent, z/OS UNIX Trap Forwarder Daemon.

9 Results of the Evaluation

9.1 CC specific results

The Evaluation Technical Report (ETR), [7] was provided by the ITSEF according to the Common Criteria [1], the Methodology [2], the requirements of the Scheme [3] and all interpretations and guidelines of the Scheme (AIS) [4] as relevant for the TOE.

The evaluation methodology CEM [2] was used for all assurance requirements claimed for the TOE.

As a result of the evaluation the verdict PASS is confirmed for the following assurance components:

- All components of the class ASE
- All components of the EAL 4 package as defined in the CC (see also part C of this report)
- The components ALC_FLR.3 Systematic flaw remediation augmented for this TOE evaluation.

As the evaluation work performed for this certification procedure was carried out as a re-evaluation based on the certificate BSI-DSZ-CC-0377-2007, re-use of specific evaluation tasks was possible. The focus of this re-evaluation was on newly added security functionality like:

- System Logger audit services,
- Network Policy Agent,
- Network Security Services.
- RACF handling of digital certificates (RACDCERT),
- Web Express Logon services and
- anonymous FTP

The evaluation has confirmed:

- for PP Conformance Labeled Security Protection Profile (LSPP), Issue
 - 1.b, 08.10.1999 and Controlled Access Protection Profile (CAPP), Issue 1.d, 08.10.1999 ([8] and [9])
- for the functionality: PP conformant plus product specific extensions

Common Criteria Part 2 extended

 for the assurance: Common Criteria Part 3 conformant EAL 4 augmented by ALC_FLR.3

• The TOE Security Function User Authentication based on passwords fulfils the claimed Strength of Function medium.

The results of the evaluation are only applicable to the TOE as defined in chapter 2 and the configuration as outlined in chapter 8 above.

9.2 Results of cryptographic assessment

The rating of the strength of functions does not include the crypto-algorithms suitable for encryption and decryption (see BSIG Section 4, Para. 3, Clause 2). This holds for:

- The TOE Security Functions "RACF Passtickets", "Authentication via Client Digital Certificates", "Authentication via Kerberos" and "Communication Security" and
- for other usage of encryption and decryption within the TOE.

10 Obligations and notes for the usage of the TOE

The operational documents as outlined in table 2 contain necessary information about the usage of the TOE and all security hints therein have to be considered.

11 Security Target

For the purpose of publishing, the security target [6] of the target of evaluation (TOE) is provided within a separate document as Annex A of this report.

12 Definitions

12.1 Acronyms

BSI Bundesamt für Sicherheit in der Informationstechnik / Federal

Office for Information Security, Bonn, Germany

CCRA Common Criteria Recognition Arrangement

CC Common Criteria for IT Security Evaluation

DAC Discretionary access control

EAL Evaluation Assurance Level

LDAP Lightweight Directory Access Protocol

IT Information Technology

ITSEF Information Technology Security Evaluation Facility

MAC Mandatory access control

PKI Public Key Infrastructure

PP Protection Profile

PR/SM[™] Processor Resource/Systems Manager[™]

RACF Resource Access Control Facility

SF Security Function

SFP Security Function Policy

SMF System Management Facility

SOF Strength of Function

ST Security Target

TOE Target of Evaluation
TSC TSF Scope of Control
TSF TOE Security Functions

TSP TOE Security Policy

12.2 Glossary

Augmentation - The addition of one or more assurance component(s) from CC Part 3 to an EAL or assurance package.

Extension - The addition to an ST or PP of functional requirements not contained in part 2 and/or assurance requirements not contained in part 3 of the CC.

Formal - Expressed in a restricted syntax language with defined semantics based on well-established mathematical concepts.

Informal - Expressed in natural language.

Object - An entity within the TSC that contains or receives information and upon which subjects perform operations.

Protection Profile - An implementation-independent set of security requirements for a category of TOEs that meet specific consumer needs.

Security Function - A part or parts of the TOE that have to be relied upon for enforcing a closely related subset of the rules from the TSP.

Security Target - A set of security requirements and specifications to be used as the basis for evaluation of an identified TOE.

Semiformal - Expressed in a restricted syntax language with defined semantics.

Strength of Function - A qualification of a TOE security function expressing the minimum efforts assumed necessary to defeat its expected security behaviour by directly attacking its underlying security mechanisms.

SOF-basic - A level of the TOE strength of function where analysis shows that the function provides adequate protection against casual breach of TOE security by attackers possessing a low attack potential.

SOF-medium - A level of the TOE strength of function where analysis shows that the function provides adequate protection against straightforward or intentional breach of TOE security by attackers possessing a moderate attack potential.

SOF-high - A level of the TOE strength of function where analysis shows that the function provides adequate protection against deliberately planned or organised breach of TOE security by attackers possessing a high attack potential.

Subject - An entity within the TSC that causes operations to be performed.

Target of Evaluation - An IT product or system and its associated administrator and user guidance documentation that is the subject of an evaluation.

TOE Security Functions - A set consisting of all hardware, software, and firmware of the TOE that must be relied upon for the correct enforcement of the TSP.

TOE Security Policy - A set of rules that regulate how assets are managed, protected and distributed within a TOE.

TSF Scope of Control - The set of interactions that can occur with or within a TOE and are subject to the rules of the TSP.

13 Bibliography

[1] Common Criteria for Information Technology Security Evaluation, Version 2.3, August 2005

- [2] Common Methodology for Information Technology Security Evaluation (CEM), Evaluation Methodology, Version 2.3, August 2005
- [3] BSI certification: Procedural Description (BSI 7125)
- [4] Application Notes and Interpretations of the Scheme (AIS) as relevant for the TOE specifically.
 - AIS 14, Version 4, 2 April 2007, Anforderungen an Aufbau und Inhalt der ETR-Teile (Evaluation Technical Report) für Evaluationen nach CC (Common Criteria)
 - AIS 19, Version 3, 2 April 2007, Anforderungen an Aufbau und Inhalt der Zusammenfassung des ETR (Evaluation Technical Report) für Evaluationen nach CC (Common Criteria) und ITSEC
 - AIS 23, Version 1.0, 7 November 2000, Zusammentragen von Nachweisen der Entwickler (Collection of Developer Evidence)
 - AIS 32, Version 1, 02 July 2001, Übernahme international abgestimmter CC-Interpretationen ins deutsche Zertifizierungsschema.
- [5] German IT Security Certificates (BSI 7148, BSI 7149), periodically updated list published also on the BSI Web-site
- [6] Security Target BSI-DSZ-0459-2008, Version 4.10, 2008-02-15, Security Target for IBM z/OS Version 1 Release 9, IBM Corporation
- [7] Evaluation Technical Report BSI-DSZ-CC-0459, Version 1.1, 26.02.2008, atsec information security GmbH (confidential document)
- [8] Labeled Security Protection Profile (LSPP), Issue 1.b, 08.10.1999
- [9] Controlled Access Protection Profile (CAPP), Issue 1.d, 08.10.1999
- [10] z/OS V1R9.0 Planning for Multilevel Security and the Common Criteria, Eighth Edition, March, 2008, GA22-7509-07

C Excerpts from the Criteria

CC Part1:

Conformance results (chapter 7.4)

"The conformance result indicates the source of the collection of requirements that is met by a TOE or PP that passes its evaluation. This conformance result is presented with respect to CC Part 2 (functional requirements), CC Part 3 (assurance requirements) and, if applicable, to a pre-defined set of requirements (e.g., EAL, Protection Profile).

The conformance result consists of one of the following:

- CC Part 2 conformant A PP or TOE is CC Part 2 conformant if the functional requirements are based only upon functional components in CC Part 2.
- **CC Part 2 extended** A PP or TOE is CC Part 2 extended if the functional requirements include functional components not in CC Part 2.

plus one of the following:

- CC Part 3 conformant A PP or TOE is CC Part 3 conformant if the assurance requirements are based only upon assurance components in CC Part 3.
- **CC Part 3 extended** A PP or TOE is CC Part 3 extended if the assurance requirements include assurance requirements not in CC Part 3.

Additionally, the conformance result may include a statement made with respect to sets of defined requirements, in which case it consists of one of the following:

- Package name Conformant A PP or TOE is conformant to a pre-defined named functional and/or assurance package (e.g. EAL) if the requirements (functions or assurance) include all components in the packages listed as part of the conformance result.
- Package name Augmented A PP or TOE is an augmentation of a predefined named functional and/or assurance package (e.g. EAL) if the requirements (functions or assurance) are a proper superset of all components in the packages listed as part of the conformance result.

Finally, the conformance result may also include a statement made with respect to Protection Profiles, in which case it includes the following:

 PP Conformant - A TOE meets specific PP(s), which are listed as part of the conformance result."

CC Part 3:

Protection Profile criteria overview (chapter 8.2)

"The goal of a PP evaluation is to demonstrate that the PP is complete, consistent, technically sound, and hence suitable for use as a statement of requirements for one or more evaluatable TOEs. Such a PP may be eligible for inclusion within a PP registry."

"Assurance Class	Assurance Family					
	TOE description (APE_DES)					
	Security environment (APE_ENV)					
Class APE: Protection Profile evaluation	PP introduction (APE_INT)					
	Security objectives (APE_OBJ)					
	IT security requirements (APE_REQ)					
	Explicitly stated IT security requirements (APE_SRE)					

Table 3 - Protection Profile families - CC extended requirements "

Security Target criteria overview (Chapter 8.3)

"The goal of an ST evaluation is to demonstrate that the ST is complete, consistent, technically sound, and hence suitable for use as the basis for the corresponding TOE evaluation."

"Assurance Class	Assurance Family				
Class ASE: Security Target evaluation	TOE description (ASE_DES)				
	Security environment (ASE_ENV)				
	ST introduction (ASE_INT)				
	Security objectives (ASE_OBJ)				
	PP claims (ASE_PPC)				
	IT security requirements (ASE_REQ)				
	Explicitly stated IT security requirements (ASE_SRE)				
	TOE summary specification (ASE_TSS)				

Table 5 - Security Target families - CC extended requirements "

Assurance categorisation (chapter 7.5)

"The assurance classes, families, and the abbreviation for each family are shown in Table 1.

Assurance Class	Assurance Family				
	CM automation (ACM_AUT)				
ACM: Configuration management	CM capabilities (ACM_CAP)				
	CM scope (ACM_SCP)				
ADO: Delivery and operation	Delivery (ADO_DEL)				
	Installation, generation and start-up (ADO_IGS)				
	Functional specification (ADV_FSP)				
	High-level design (ADV_HLD)				
	Implementation representation (ADV_IMP)				
ADV: Development	TSF internals (ADV_INT)				
	Low-level design (ADV_LLD)				
	Representation correspondence (ADV_RCR)				
	Security policy modeling (ADV_SPM)				
AGD: Guidance documents	Administrator guidance (AGD_ADM)				
	User guidance (AGD_USR)				
	Development security (ALC_DVS)				
ALC: Life cycle support	Flaw remediation (ALC_FLR)				
	Life cycle definition (ALC_LCD)				
	Tools and techniques (ALC_TAT)				
	Coverage (ATE_COV)				
ATE: Tests	Depth (ATE_DPT)				
	Functional tests (ATE_FUN)				
	Independent testing (ATE_IND)				
	Covert channel analysis (AVA_CCA)				
AVA: Vulnerability assessment	Misuse (AVA_MSU)				
	Strength of TOE security functions (AVA_SOF)				
	Vulnerability analysis (AVA_VLA)				

Table 1: Assurance family breakdown and mapping"

Evaluation assurance levels (chapter 11)

"The Evaluation Assurance Levels (EALs) provide an increasing scale that balances the level of assurance obtained with the cost and feasibility of acquiring that degree of assurance. The CC approach identifies the separate concepts of assurance in a TOE at the end of the evaluation, and of maintenance of that assurance during the operational use of the TOE.

It is important to note that not all families and components from CC Part 3 are included in the EALs. This is not to say that these do not provide meaningful and desirable assurances. Instead, it is expected that these families and components will be considered for augmentation of an EAL in those PPs and STs for which they provide utility."

Evaluation assurance level (EAL) overview (chapter 11.1)

"Table 6 represents a summary of the EALs. The columns represent a hierarchically ordered set of EALs, while the rows represent assurance families. Each number in the resulting matrix identifies a specific assurance component where applicable.

As outlined in the next section, seven hierarchically ordered evaluation assurance levels are defined in the CC for the rating of a TOE's assurance. They are hierarchically ordered inasmuch as each EAL represents more assurance than all lower EALs. The increase in assurance from EAL to EAL is accomplished by substitution of a hierarchically higher assurance component from the same assurance family (i.e. increasing rigour, scope, and/or depth) and from the addition of assurance components from other assurance families (i.e. adding new requirements).

These EALs consist of an appropriate combination of assurance components as described in chapter 7 of this Part 3. More precisely, each EAL includes no more than one component of each assurance family and all assurance dependencies of every component are addressed.

While the EALs are defined in the CC, it is possible to represent other combinations of assurance. Specifically, the notion of "augmentation" allows the addition of assurance components (from assurance families not already included in the EAL) or the substitution of assurance components (with another hierarchically higher assurance component in the same assurance family) to an EAL. Of the assurance constructs defined in the CC, only EALs may be augmented. The notion of an "EAL minus a constituent assurance component" is not recognised by the standard as a valid claim. Augmentation carries with it the obligation on the part of the claimant to justify the utility and added value of the added assurance component to the EAL. An EAL may also be extended with explicitly stated assurance requirements.

Assurance Class	Assurance Family	Assurance Components Evaluation Assurance Level						by
		EAL1	EAL2	EAL3	EAL4	EAL5	EAL6	EAL7
Configuration management	ACM_AUT				1	1	2	2
	ACM_CAP	1	2	3	4	4	5	5
	ACM_SCP			1	2	3	3	3
Delivery and operation	ADO_DEL		1	1	2	2	2	3
	ADO_IGS	1	1	1	1	1	1	1
Development	ADV_FSP	1	1	1	2	3	3	4
	ADV_HLD		1	2	2	3	4	5
	ADV_IMP				1	2	3	3
	ADV_INT					1	2	3
	ADV_LLD				1	1	2	2
	ADV_RCR	1	1	1	1	2	2	3
	ADV_SPM				1	3	3	3
Guidance documents	AGD_ADM	1	1	1	1	1	1	1
	AGD_USR	1	1	1	1	1	1	1
Life cycle support	ALC_DVS			1	1	1	2	2
	ALC_FLR							
	ALC_LCD				1	2	2	3
	ALC_TAT				1	2	3	3
Tests	ATE_COV		1	2	2	2	3	3
	ATE_DPT			1	1	2	2	3
	ATE_FUN		1	1	1	1	2	2
	ATE_IND	1	2	2	2	2	2	3
Vulnerability assessment	AVA_CCA					1	2	2
	AVA_MSU			1	2	2	3	3
	AVA_SOF		1	1	1	1	1	1
	AVA_VLA		1	1	2	3	4	4

Table 6: Evaluation assurance level summary"

Evaluation assurance level 1 (EAL1) - functionally tested (chapter 11.3)

"Objectives

EAL1 is applicable where some confidence in correct operation is required, but the threats to security are not viewed as serious. It will be of value where independent assurance is required to support the contention that due care has been exercised with respect to the protection of personal or similar information.

EAL1 provides an evaluation of the TOE as made available to the customer, including independent testing against a specification, and an examination of the guidance documentation provided. It is intended that an EAL1 evaluation could be successfully conducted without assistance from the developer of the TOE, and for minimal outlay.

An evaluation at this level should provide evidence that the TOE functions in a manner consistent with its documentation, and that it provides useful protection against identified threats."

Evaluation assurance level 2 (EAL2) - structurally tested (chapter 11.4)

"Objectives

EAL2 requires the co-operation of the developer in terms of the delivery of design information and test results, but should not demand more effort on the part of the developer than is consistent with good commercial practice. As such it should not require a substantially increased investment of cost or time.

EAL2 is therefore applicable in those circumstances where developers or users require a low to moderate level of independently assured security in the absence of ready availability of the complete development record. Such a situation may arise when securing legacy systems, or where access to the developer may be limited."

Evaluation assurance level 3 (EAL3) - methodically tested and checked (chapter 11.5)

"Objectives

EAL3 permits a conscientious developer to gain maximum assurance from positive security engineering at the design stage without substantial alteration of existing sound development practices.

EAL3 is applicable in those circumstances where developers or users require a moderate level of independently assured security, and require a thorough investigation of the TOE and its development without substantial reengineering."

Evaluation assurance level 4 (EAL4) - methodically designed, tested, and reviewed (chapter 11.6)

"Objectives

EAL4 permits a developer to gain maximum assurance from positive security engineering based on good commercial development practices which, though rigorous, do not require substantial specialist knowledge, skills, and other resources. EAL4 is the highest level at which it is likely to be economically feasible to retrofit to an existing product line.

EAL4 is therefore applicable in those circumstances where developers or users require a moderate to high level of independently assured security in conventional commodity TOEs and are prepared to incur additional security-specific engineering costs."

Evaluation assurance level 5 (EAL5) - semiformally designed and tested (chapter 11.7)

"Objectives

EAL5 permits a developer to gain maximum assurance from security engineering based upon rigorous commercial development practices supported by moderate application of specialist security engineering techniques. Such a TOE will probably be designed and developed with the intent of achieving EAL5 assurance. It is likely that the additional costs attributable to the EAL5 requirements, relative to rigorous development without the application of specialised techniques, will not be large.

EAL5 is therefore applicable in those circumstances where developers or users require a high level of independently assured security in a planned development and require a rigorous development approach without incurring unreasonable costs attributable to specialist security engineering techniques."

Evaluation assurance level 6 (EAL6) - semiformally verified design and tested (chapter 11.8)

"Objectives

EAL6 permits developers to gain high assurance from application of security engineering techniques to a rigorous development environment in order to produce a premium TOE for protecting high value assets against significant risks.

EAL6 is therefore applicable to the development of security TOEs for application in high risk situations where the value of the protected assets justifies the additional costs."

Evaluation assurance level 7 (EAL7) - formally verified design and tested (chapter 11.9)

"Objectives

EAL7 is applicable to the development of security TOEs for application in extremely high risk situations and/or where the high value of the assets justifies the higher costs. Practical application of EAL7 is currently limited to TOEs with tightly focused security functionality that is amenable to extensive formal analysis."

Strength of TOE security functions (AVA_SOF) (chapter 19.3)

"Objectives

Even if a TOE security function cannot be bypassed, deactivated, or corrupted, it may still be possible to defeat it because there is a vulnerability in the concept of its underlying security mechanisms. For those functions a qualification of their security behaviour can be made using the results of a quantitative or statistical analysis of the security behaviour of these mechanisms and the effort required to overcome them. The qualification is made in the form of a strength of TOE security function claim."

Vulnerability analysis (AVA_VLA) (chapter 19.4)

"Objectives

Vulnerability analysis is an assessment to determine whether vulnerabilities identified, during the evaluation of the construction and anticipated operation of the TOE or by other methods (e.g. by flaw hypotheses), could allow users to violate the TSP.

Vulnerability analysis deals with the threats that a user will be able to discover flaws that will allow unauthorised access to resources (e.g. data), allow the ability to interfere with or alter the TSF, or interfere with the authorised capabilities of other users."

"Application notes

A vulnerability analysis is performed by the developer in order to ascertain the presence of security vulnerabilities, and should consider at least the contents of all the TOE deliverables including the ST for the targeted evaluation assurance level. The developer is required to document the disposition of identified vulnerabilities to allow the evaluator to make use of that information if it is found useful as a support for the evaluator's independent vulnerability analysis."

"Independent vulnerability analysis goes beyond the vulnerabilities identified by the developer. The main intent of the evaluator analysis is to determine that the TOE is resistant to penetration attacks performed by an attacker possessing a low (for AVA_VLA.2 Independent vulnerability analysis), moderate (for AVA_VLA.3 Moderately resistant) or high (for AVA_VLA.4 Highly resistant) attack potential."