BSI-DSZ-CC-0837-V2-2014 for NXP Secure Smart Card Controller P60x080/052/040PVC(Y/Z/A)/PVG with IC Dedicated Software from NXP Semiconductors Germany GmbH BSI - Bundesamt für Sicherheit in der Informationstechnik, Postfach 20 03 63, D-53133 Bonn Phone +49 (0)228 99 9582-0, Fax +49 (0)228 9582-5477, Infoline +49 (0)228 99 9582-111 Certification Report V1.0 CC-Zert-327 V5.0 BSI-DSZ-CC-0837-V2-2014 Smartcard Controller NXP Secure Smart Card Controller P60x080/052/040PVC(Y/Z/A)/PVG with IC Dedicated Software from NXP Semiconductors Germany GmbH PP Conformance: Security IC Platform Protection Profile, Version 1.0, 15 June 2007, BSI-CC-PP-0035-2007 Functionality: PP conformant plus product specific extensions Common Criteria Part 2 extended Assurance: Common Criteria Part 3 conformant EAL 6 augmented by ALC_FLR.1 and ASE_TSS.2 SOGIS Recognition Agreement The IT Product identified in this certificate has been evaluated at an approved evaluation facility using the Common Methodology for IT Security Evaluation (CEM), Version 3.1 extended by advice of the Certification Body for components beyond EAL 5 and CC Supporting Documents as listed in the Certification Report for conformance to the Common Criteria for IT Security Evaluation (CC), Version 3.1. CC and CEM are also published as ISO/IEC 15408 and ISO/IEC 18045. This certificate applies only to the specific version and release of the product in its evaluated configuration and in conjunction with the complete Certification Report. The evaluation has been conducted in accordance with the provisions of the certification scheme of the German Federal Office for Information Security (BSI) and the conclusions of the evaluation facility in the evaluation technical report are consistent with the evidence adduced. This certificate is not an endorsement of the IT Product by the Federal Office for Information Security or any other organisation that recognises or gives effect to this certificate, and no warranty of the IT Product by the Federal Office for Information Security or any other organisation that recognises or gives effect to this certificate, is either expressed or implied. Common Criteria Recognition Arrangement for components up to EAL 4 Bonn, 24 October 2014 For the Federal Office for Information Security Bernd Kowalski L.S. Head of Department Bundesamt für Sicherheit in der Informationstechnik Godesberger Allee 185-189 - D-53175 Bonn - Postfach 20 03 63 - D-53133 Bonn Phone +49 (0)228 99 9582-0 - Fax +49 (0)228 9582-5477 - Infoline +49 (0)228 99 9582-111 Certification Report BSI-DSZ-CC-0837-V2-2014 This page is intentionally left blank. 4 / 36 BSI-DSZ-CC-0837-V2-2014 Certification Report Preliminary Remarks Under the BSIG1 Act, the Federal Office for Information Security (BSI) has the task of issuing certificates for information technology products. Certification of a product is carried out on the instigation of the vendor or a distributor, hereinafter called the sponsor. A part of the procedure is the technical examination (evaluation) of the product according to the security criteria published by the BSI or generally recognised security criteria. The evaluation is normally carried out by an evaluation facility recognised by the BSI or by BSI itself. The result of the certification procedure is the present Certification Report. This report contains among others the certificate (summarised assessment) and the detailed Certification Results. The Certification Results contain the technical description of the security functionality of the certified product, the details of the evaluation (strength and weaknesses) and instructions for the user. 1 Act on the Federal Office for Information Security (BSI-Gesetz - BSIG) of 14 August 2009, Bundesgesetzblatt I p. 2821 5 / 36 Certification Report BSI-DSZ-CC-0837-V2-2014 Contents A Certification.........................................................................................................................7 1 Specifications of the Certification Procedure..................................................................7 2 Recognition Agreements.................................................................................................7 3 Performance of Evaluation and Certification...................................................................8 4 Validity of the Certification Result....................................................................................9 5 Publication.......................................................................................................................9 B Certification Results..........................................................................................................11 1 Executive Summary......................................................................................................12 2 Identification of the TOE................................................................................................13 3 Security Policy...............................................................................................................14 4 Assumptions and Clarification of Scope........................................................................15 5 Architectural Information................................................................................................15 6 Documentation..............................................................................................................16 7 IT Product Testing..........................................................................................................16 8 Evaluated Configuration................................................................................................17 9 Results of the Evaluation...............................................................................................18 10 Obligations and Notes for the Usage of the TOE........................................................19 11 Security Target.............................................................................................................20 12 Definitions....................................................................................................................20 13 Bibliography.................................................................................................................22 C Excerpts from the Criteria.................................................................................................25 CC Part 1:........................................................................................................................25 CC Part 3:........................................................................................................................26 D Annexes............................................................................................................................33 6 / 36 BSI-DSZ-CC-0837-V2-2014 Certification Report A Certification 1 Specifications of the Certification Procedure The certification body conducts the procedure according to the criteria laid down in the following: ● Act on the Federal Office for Information Security2 ● BSI Certification Ordinance3 ● BSI Schedule of Costs4 ● Special decrees issued by the Bundesministerium des Innern (Federal Ministry of the Interior) ● DIN EN ISO/IEC 17065 standard ● BSI certification: Technical information on the IT security certification, Procedural Description (BSI 7138) [3] ● BSI certification: Requirements regarding the Evaluation Facility (BSI 7125) [3] ● Common Criteria for IT Security Evaluation (CC), Version 3.15 [1] also published as ISO/IEC 15408. ● Common Methodology for IT Security Evaluation (CEM), Version 3.1 [2] also published as ISO/IEC 18045. ● BSI certification: Application Notes and Interpretation of the Scheme (AIS) [4] 2 Recognition Agreements In order to avoid multiple certification of the same product in different countries a mutual recognition of IT security certificates - as far as such certificates are based on ITSEC or CC - under certain conditions was agreed. European Recognition of ITSEC/CC – Certificates (SOGIS-MRA) The SOGIS-Mutual Recognition Agreement (SOGIS-MRA) Version 3 became effective in April 2010. It defines the recognition of certificates for IT-Products at a basic recognition level and in addition at higher recognition levels for IT-Products related to certain technical domains only. The basic recognition level includes Common Criteria (CC) Evaluation Assurance Levels EAL1 to EAL4 and ITSEC Evaluation Assurance Levels E1 to E3 (basic). For higher recognition levels the technical domain Smart card and similar Devices has been defined. 2 Act on the Federal Office for Information Security (BSI-Gesetz - BSIG) of 14 August 2009, Bundesgesetzblatt I p. 2821 3 Ordinance on the Procedure for Issuance of a Certificate by the Federal Office for Information Security (BSI-Zertifizierungsverordnung, BSIZertV) of 07 July 1992, Bundesgesetzblatt I p. 1230 4 Schedule of Cost for Official Procedures of the Bundesamt für Sicherheit in der Informationstechnik (BSI-Kostenverordnung, BSI-KostV) of 03 March 2005, Bundesgesetzblatt I p. 519 5 Proclamation of the Bundesministerium des Innern of 12 February 2007 in the Bundesanzeiger dated 23 February 2007, p. 3730 7 / 36 Certification Report BSI-DSZ-CC-0837-V2-2014 It includes assurance levels beyond EAL4 resp. E3 (basic). In addition, certificates issued for Protection Profiles based on Common Criteria are part of the recognition agreement. As of September 2011 the new agreement has been signed by the national bodies of Austria, Finland, France, Germany, Italy, The Netherlands, Norway, Spain, Sweden and the United Kingdom. Details on recognition and the history of the agreement can be found at https://www.bsi.bund.de/zertifizierung. The SOGIS-MRA logo printed on the certificate indicates that it is recognised under the terms of this agreement by the nations listed above. This certificate is recognized under SOGIS-MRA for all assurance components selected. International Recognition of CC – Certificates (CCRA) The international arrangement on the mutual recognition of certificates based on the CC (Common Criteria Recognition Arrangement, CCRA-2014) has been ratified on September 8, 2014. It covers CC certificates based on collaborative Protection Profiles (cPP) (exact use), certificates based on assurance components up to and including EAL 2 or the assurance family Flaw Remediation (ALC_FLR) and certificates for Protection Profiles and for collaborative Protection Profiles (cPP). The CCRA-2014 replaces the old CCRA signed in May 2000 (CCRA-2000). Certificates based on CCRA-2000, issued before September 8, 2014 are still under recognition according to the rules of CCRA-2000. For on September 8, 2014 ongoing certification procedures and for Assurance Continuity (maintenance and re-certification) of old certificates a transition period on the recognition of certificates according to the rules of CCRA-2000 (i.e. assurance components up to and including EAL 4 or the assurance family Flaw Remediation (ALC_FLR)) is defined until September 8, 2017. As of September 2014 the signatories of the new CCRA are government representatives from the following nations: Australia, Austria, Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, India, Israel, Italy, Japan, Malaysia, The Netherlands, New Zealand, Norway, Pakistan, Republic of Korea, Singapore, Spain, Sweden, Turkey, United Kingdom, and the United States. The current list of signatory nations and approved certification schemes can be seen on the website: http://www.commoncriteriaportal.org. The Common Criteria Recognition Arrangement logo printed on the certificate indicates that this certification is recognised under the terms of this agreement by the nations listed above. As this certificate is a re-certification of a certificate issued according to CCRA-2000 this certificate is recognized according to the rules of CCRA-2000, i.e. up to and including CC part 3 EAL 4 components. The evaluation contained the components ADV_FSP.5, ADV_IMP.2, ADV_INT.3, ADV_SPM.1, ADV_TDS.5, ALC_CMC.5, ALC_CMS.5, ALC_DVS.2, ALC_TAT.3, ASE_TSS.2, ATE_COV.3, ATE_DPT.3, ATE_FUN.2 and AVA_VAN.5, that are not mutually recognised in accordance with the provisions of the CCRA-2000, for mutual recognition the EAL 4 components of these assurance families are relevant. 3 Performance of Evaluation and Certification The certification body monitors each individual evaluation to ensure a uniform procedure, a uniform interpretation of the criteria and uniform ratings. 8 / 36 BSI-DSZ-CC-0837-V2-2014 Certification Report The product NXP Secure Smart Card Controller P60x080/052/040PVC(Y/Z/A)/PVG with IC Dedicated Software has undergone the certification procedure at BSI. This is a re-certification based on BSI-DSZ-CC-0837-2013-MA-01. Specific results from the evaluation process BSI-DSZ-CC-0837-2013-MA-01 were re-used. The evaluation of the product NXP Secure Smart Card Controller P60x080/052/040PVC(Y/Z/A)/PVG with IC Dedicated Software was conducted by TÜV Informationstechnik GmbH. The evaluation was completed on 2 October 2014. TÜV Informationstechnik GmbH is an evaluation facility (ITSEF)6 recognised by the certification body of BSI. For this certification procedure the sponsor and applicant is: NXP Semiconductors Germany GmbH. The product was developed by: NXP Semiconductors Germany GmbH. The certification is concluded with the comparability check and the production of this Certification Report. This work was completed by the BSI. 4 Validity of the Certification Result This Certification Report only applies to the version of the product as indicated. The confirmed assurance package is only valid on the condition that ● all stipulations regarding generation, configuration and operation, as given in the following report, are observed, ● the product is operated in the environment described, as specified in the following report and in the Security Target. For the meaning of the assurance levels please refer to the excerpts from the criteria at the end of the Certification Report. The Certificate issued confirms the assurance of the product claimed in the Security Target at the date of certification. As attack methods evolve over time, the resistance of the certified version of the product against new attack methods needs to be re-assessed. Therefore, the sponsor should apply for the certified product being monitored within the assurance continuity program of the BSI Certification Scheme (e.g. by a re-certification). Specifically, if results of the certification are used in subsequent evaluation and certification procedures, in a system integration process or if a user's risk management needs regularly updated results, it is recommended to perform a re-assessment on a regular e.g. annual basis. In case of changes to the certified version of the product, the validity can be extended to the new versions and releases, provided the sponsor applies for assurance continuity (i.e. re-certification or maintenance) of the modified product, in accordance with the procedural requirements, and the evaluation does not reveal any security deficiencies. 5 Publication The product NXP Secure Smart Card Controller P60x080/052/040PVC(Y/Z/A)/PVG with IC Dedicated Software has been included in the BSI list of certified products, which is published regularly (see also Internet: https://www.bsi.bund.de and [5]). Further information can be obtained from BSI-Infoline +49 228 9582-111. 6 Information Technology Security Evaluation Facility 9 / 36 Certification Report BSI-DSZ-CC-0837-V2-2014 Further copies of this Certification Report can be requested from the developer7 of the product. The Certification Report may also be obtained in electronic form at the internet address stated above. 7 NXP Semiconductors Germany GmbH Stresemannallee 101 22529 Hamburg 10 / 36 BSI-DSZ-CC-0837-V2-2014 Certification Report B Certification Results The following results represent a summary of ● the Security Target of the sponsor for the Target of Evaluation, ● the relevant evaluation results from the evaluation facility, and ● complementary notes and stipulations of the certification body. 11 / 36 Certification Report BSI-DSZ-CC-0837-V2-2014 1 Executive Summary The Target of Evaluation (TOE) is the IC hardware platform NXP Secure Smart Card Controller P60x080/052/040PVC(Y/Z/A)/PVG with IC Dedicated Software and documentation describing the Instruction Set and the usage. The IC hardware platform NXP Secure Smart Card Controller P60x080/052/040PVC(Y/Z/A)/VG is a microcontroller incorporating a central processing unit, memories accessible via a Memory Management Unit, cryptographic coprocessors, other security components and two communication interfaces. The central processing unit supports a 32-/24-/16-/8-bit instruction set optimized for smart card applications, which is a super set of the 80C51 family instruction set. The first and in some cases the second byte of an instruction are used for operation encoding. On-chip memories are ROM, RAM and EEPROM. The non-volatile EEPROM can be used as data or program memory. It consists of high reliable memory cells, which guarantee data integrity. The EEPROM is optimized for applications requiring reliable non-volatile data storage for data and program code. EEPROM double read function is included for correct memory readout. Dedicated security functionality protects the contents of all memories. The Security Target [6] is the basis for this certification. It is based on the certified Protection Profile Security IC Platform Protection Profile, Version 1.0, 15 June 2007, BSI-CC-PP-0035-2007 [7]. The TOE Security Assurance Requirements (SAR) are based entirely on the assurance components defined in Part 3 of the Common Criteria (see part C or [1], Part 3 for details). The TOE meets the assurance requirements of the Evaluation Assurance Level EAL 6 augmented by ALC_FLR.1 and ASE_TSS.2. The TOE Security Functional Requirements (SFR) relevant for the TOE are outlined in the Security Target [6] and [8], chapter 6. They are selected from Common Criteria Part 2 and some of them are newly defined. Thus the TOE is CC Part 2 extended. The TOE Security Functional Requirements are implemented by the following TOE Security Functionality: TOE Security Functionality Addressed issue Security Services: SS.RNG Random Number Generator SS.HW_DES Triple-DES coprocessor SS.HW_AES AES coprocessor SS.CRC Cyclic Redundancy Check SS.Reconfig Post Delivery Configuration Security Features: SF.OPC Control of Operating Conditions SF.PHY Protection against Physical Manipulation SF.LOG Logical Protection SF.COMP Protection of Mode Control SF.MEM_ACC Memory Access Control SF.SFR_ACC Special Function Register Access Control 12 / 36 BSI-DSZ-CC-0837-V2-2014 Certification Report TOE Security Functionality Addressed issue SF.FFW Firmware Firewall SF.FIRMWARE Firmware Support Table 1: TOE Security Functionalities For more details please refer to the Security Target [6] and [8], chapter 7. The assets to be protected by the TOE are defined in the Security Target [6] and [8], chapter 3.1. Based on these assets the TOE Security Problem is defined in terms of Assumptions, Threats and Organisational Security Policies. This is outlined in the Security Target [6] and [8], chapter 3.2, 3.3 and 3.4. This certification covers the configurations of the TOE as outlined in chapter 8. The vulnerability assessment results as stated within this certificate do not include a rating for those cryptographic algorithms and their implementation suitable for encryption and decryption (see BSIG Section 9, Para. 4, Clause 2). The certification results only apply to the version of the product indicated in the certificate and on the condition that all the stipulations are kept as detailed in this Certification Report. This certificate is not an endorsement of the IT product by the Federal Office for Information Security (BSI) or any other organisation that recognises or gives effect to this certificate, and no warranty of the IT product by BSI or any other organisation that recognises or gives effect to this certificate, is either expressed or implied. 2 Identification of the TOE The Target of Evaluation (TOE) is called: NXP Secure Smart Card Controller P60x080/052/040PVC(Y/Z/A)/PVG with IC Dedicated Software The following table outlines the TOE deliverables: No Type Identifier Release Form of Delivery 1 HW NXP Secure Smart Card Controller P60x080/052/040PVC(Y/Z/A) and NXP Secure Smart Card Controller P60x080/052/040PVG nameplate 9049A and nameplate 9049B wafer, module, inlay or package 2 SW Test ROM Software (Security IC Dedicated Test Software),Test-ROM on the chip acc. to 9049A_LA001_TESTROM_v1_btos_0Av05_fos_6v 10.hex Version 0A.05, 2012-05-07 stored in ROM on the chip 3 SW Boot ROM Software (part of the Security IC DedicatedSupport Software), Boot-ROM on the chip acc. to 9049A_LA001_TESTROM_v1_btos_0Av05_fos_6v 10.hex Version 0A.05, 2012-05-07 stored in ROM on the chip 4 SW PVC(Y): Firmware Operating System (FOS) (part of the Security IC Dedicated Support Software), Firmware Operating System on the chip acc. to 9049A_LA001_TESTROM_v1_btos_0Av05_fos_6v 10.hex 2012-05-07,Version 6.11 stored in ROM on the chip 13 / 36 Certification Report BSI-DSZ-CC-0837-V2-2014 No Type Identifier Release Form of Delivery PVC(Z/A): Firmware Operating System on the chip acc. to 9049A_LA001_TESTROM_v1_btos_0Av05_fos_6v 10.hex 2012-05-07,Version 6.11 and 6.13 stored in ROM on the 2 chip PVG: Firmware Operating System on the chip acc. to 9049A_LA001_TESTROM_v1_btos_0Av05_fos_6v 10.hex 2012-05-07,Version 6.11 and 6.13 stored in ROM on the 2 chip 5 DOC Product Data Sheet, SmartMX2 family P60x040/052/080VC/VG, NXP Semiconductors, Business Unit Identification Rev. 5.2, 2014-06-27 electronic form 6 DOC Instruction set for the SmartMX2 family, Secure smart card controller, NXP Semiconductors, Business Unit Identification Rev. 3.1, 2012-02-02 electronic form 7 DOC NXP Secure Smart Card Controller P60x040/052/080VC/VG, Information on Guidance and Operation, Guidance and Operation Manual Rev. 1.1, 2014-06-26 electronic form 8 DOC Wafer and delivery specification, SmartMX2 family P60x040/052/080 VC/VG, NXP Semiconductors Rev. 3.3, 2014-05-21 electronic form 9 DOC Product Data Sheet Addendum, SmartMX2 family, Post Delivery Configuration, NXP Semiconductors Rev. 3.2, 2013-02-04 electronic form 10 DOC Product Data Sheet Addendum, SmartMX2 family, Chip Health Mode, NXP Semiconductors Rev. 3.0, 2012-05-11 electronic form 11 DOC Product Data Sheet Addendum, SmartMX2 family, Firmware Interface Specification, Firmware, NXP Semiconductors Rev. 4.1, 2014-06-25 electronic form Table 2: Deliverables of the TOE The commercial type name is the identification used to order the TOE P60x080/052/040PVC(Y/Z/A)/VG in the respective major configuration and with the evaluated package type. In consequence this means that a full commercial product name that fits in the variable forms described in the Security Target [6,8] determines that the hardware platform is an evaluated product. In addition the hardware version can be identified by the crypted nameplate "9049A", respectively “9049B” for PVG on the surface of the hardware platform as described in chapters 4.2 and 3.9.3 of the Wafer and delivery specification. The nameplate is the same for all configurations. In addition each major configuration has a different device coding described in the Data Sheet. 3 Security Policy The Security Policy is expressed by the set of Security Functional Requirements and implemented by the TOE. As the TOE is a hardware security platform, the security policy of the TOE provides countermeasures against: leakage of information, physical probing, malfunctions, physical manipulations, access to code, access to data memory and abuse of functionality. Hence the TOE shall: • maintain the integrity and the confidentiality of data stored in the memory of the TOE and • maintain the integrity, the correct operation and the confidentiality of Security Functions 14 / 36 BSI-DSZ-CC-0837-V2-2014 Certification Report 4 Assumptions and Clarification of Scope The Assumptions defined in the Security Target and some aspects of Threats and Organisational Security Policies are not covered by the TOE itself. These aspects lead to specific security objectives to be fulfilled by the TOE-Environment. The following topics are of relevance: Name Assumption Title OE.Plat-Appl Usage of Hardware Platform OE.Resp-Appl Treatment of User Data OE.Process-Sec-IC Protection during composite product manufacturing OE.Check-Init Check of initialisation data by the Security IC Embedded Software Table 3: Objectives for the TOE-Environment Details can be found in the Security Target [6] and [8], chapter 4.2 and 4.3. 5 Architectural Information The TOE consists of the following 10 subsystems (7 hardware / 3 software): Subsysten identifier Subsystem description IC.LOGIC_BLK The IC.LOGIC_BLK comprises the instance id_smx2_kernel except the contacts and the memory blocks. Furthermore, it is stated in the developer documentation that the hardware instantiation id_smx2_kernel instantiates and connects all digital IPs. IC.RAM This subsystem is in charge for the TOE’s RAM memory operations. In comparison to the previous subsystem, the subsystem IC.RAM is not that complex, nevertheless several modules are associated to it. IC.EEPROM This subsystem is in charge for the TOE’s EEPROM memory and its operations. IC.ROM This subsystem is in charge for the TOE’s ROM memory and its operations. IC.ANALOG This subsystem consists of two major parts:  a power conversion unit including a contactless part with voltage supply for contactless operation, clock recovery and demodulation of the contactless signal,  various sensors, a part of the random number generator, the internal oscillator and further circuitry to monitor the operating conditions and provide reference signals. IC.PADS This subsystem contains the physical interfaces of the TOE which can be divided into ISO contacts and non-ISO contacts. IC.COVER This subsystem comprises only passive metal structures. It is not included in the design hierarchy because it is not part of the functional design of the device. SW.Framework The subsystem SW.Framework is part of the IC Dedicated Support Software. It operates in the firmware mode of M.CPU and is located in IC.ROM protected by M.MMU, i.e. access from Security IC Embedded Software to the external interface of the SW.Framework can only be done via an FVEC call. The evaluator remarks that this subsystem serves merely to group a semantically similar group of modules and is to be 15 / 36 Certification Report BSI-DSZ-CC-0837-V2-2014 Subsysten identifier Subsystem description interpreted as part of the subsystem IC.ROM. This is reasonable, as all firmware resides in the TOE’s ROM. SW.Iso The subsystem SW.Iso is part of SW.Framework and implements the IC Dedicated Support software interface to use the ISO 14443-3 and 14443-4 communication layers. The evaluator remarks that this subsystem serves merely to group a semantically similar group of modules and is to be interpreted as part of the subsystem IC.ROM. This is reasonable, as all firmware resides in the TOE’s ROM. SW.CommonHal The SW.CommonHal is part of the IC Dedicated Support Software and implements the interface to use the hardware blocks M.CRC, M.CIU, M.EEIF_CTRL, M.SBC-IF, M.RNG-DIG, M.TIMER, M.COPY-MACHINE and M.CPU. The evaluator remarks that this subsystem serves merely to group a semantically similar group of modules and is to be interpreted as part of the subsystem IC.ROM. This is reasonable, as all firmware resides in the TOE’s ROM. Table 4: TOE Subsystems 6 Documentation The evaluated documentation as outlined in table 2 is being provided with the product to the customer. This documentation contains the required information for secure usage of the TOE in accordance with the Security Target. Additional obligations and notes for secure usage of the TOE as outlined in chapter 10 of this report have to be followed. 7 IT Product Testing The developer’s testing effort can be summarised in the following aspects. TOE test configuration and developer’s testing approach: • The tests are performed with the TOE in different test environments and configurations depending on the test categories. • All TSF and related security mechanisms, subsystems and modules are tested in order to assure complete coverage of all SFR. • Test ofcategories: ◦ Production testing on wafers using test functions implemented in the IC Dedicated Software. These test functions are accessed via test commands, which are issued by the production tests. Test functions respond signatures to the production tests. Production tests also apply signals to and/or measures signals at any contact of the device. Final test or module test therefore is limited to a verification of electrical connections like checking the pins of the package for shorts and opens. ◦ Simulation tests (design verification): Simulation tests are performed to verify functionality, which is not visible at the accessible interfaces of the TOE. These simulation tests are a subset of those, which were performed during development of the device to ensure a proper design of its modules. During run-time of a simulation an automated regression test continuously 16 / 36 BSI-DSZ-CC-0837-V2-2014 Certification Report compares pre-defined internal signals (probe list) like data and address buses, control signals, register contents and microcode information against a “golden reference”. Test results are automatically listed in log files and a summary, i.e. discrepancies occurred (yes/no), is output to the user interface. Manual simulation tests are performed in case an automated result comparison based on executable code is not possible. ◦ Characterization tests: Characterization tests verify the electrical properties of the device, which are specified with regard to limiting values, thresholds and timings of several electrical parameters like voltages, currents, frequencies, capacitors, resistances and latches. For this purpose a number of devices for test are taken from production. ◦ Verification tests: Verification tests are performed on single samples of the device to verify specific security functionality, which is not testable for each device during production test or within the scope of characterization testing. Such tests include standard tests of the Random Number Generator, AES coprocessor and Triple-DES coprocessor. ◦ Test of configurations: Configuration data are stored to EEPROM based on the customer’s choices in the Order Entry Form at later stages of the production test. For this purpose production test implements special test steps relying on an according test strategy to verify the required configuration. Special parts of verification tests explicitly test the configuration options of the device. Amount of developer testing performed: • The tests are performed on security mechanisms and on subsystem and module level. • As demonstrated by ATE_COV.2 the developer has tested all security mechanisms and TSFIs. • As demonstrated by ATE_DPT.3 the developer has tested all the TSF subsystems and modules against the TOE design and against the security architecture description. 8 Evaluated Configuration The TOE can be delivered in different major configurations. All of the following major configurations are covered by this evaluation: P60D080PVC(Y/Z/A)/PVG, P60D052PVC(Y/Z/A)/PVG, P60D040PVC(Y/Z/A)/PVG, P60C080PVC(Y/Z/A)/PVG, P60C052PVC(Y/Z/A)/PVG and P60C040PVC(Y/Z/A)/PVG, see the Secutity Target [6,8] for details. 17 / 36 Certification Report BSI-DSZ-CC-0837-V2-2014 9 Results of the Evaluation CC specific results The Evaluation Technical Report (ETR) [9] was provided by the ITSEF according to the Common Criteria [1], the Methodology [2], the requirements of the Scheme [3] and all interpretations and guidelines of the Scheme (AIS) [4] as relevant for the TOE. The Evaluation Methodology CEM [2] was used for those components up to EAL5 extended by advice of the Certification Body for components beyond EAL 5 and guidance specific for the technology of the product [4] (AIS 34). The following guidance specific for the technology was used: • The Application of CC to Integrated Circuits • Application of Attack Potential to Smartcards • Guidance, Smartcard Evaluation (see [4], AIS 25, AIS 26, AIS 37). For RNG assessment the scheme interpretations AIS 31 was used (see [4]). To support composite evaluations according to AIS 36 the document ETR for composite evaluation [10] was provided and approved. This document provides details of this platform evaluation that have to be considered in the course of a composite evaluation on top. The assurance refinements outlined in the Security Target were followed in the course of the evaluation of the TOE. As a result of the evaluation the verdict PASS is confirmed for the following assurance components: ● All components of the EAL 6 package including the class ASE as defined in the CC (see also part C of this report) ● The components ALC_FLR.1 and ASE_TSS.2 augmented for this TOE evaluation. As the evaluation work performed for this certification procedure was carried out as a re-evaluation based on the certificate BSI-DSZ-CC-0837-2013-MA-01, re-use of specific evaluation tasks was possible. The focus of this re-evaluation was on life cycle and laser fault injection penetration testing. The evaluation has confirmed: ● PP Conformance: Security IC Platform Protection Profile, Version 1.0, 15 June 2007, BSI-CC-PP-0035-2007 [7] ● for the Functionality: PP conformant plus product specific extensions Common Criteria Part 2 extended ● for the Assurance: Common Criteria Part 3 conformant EAL 6 augmented by ALC_FLR.1 and ASE_TSS.2 For specific evaluation results regarding the development and production environment see annex B in part D of this report. The results of the evaluation are only applicable to the TOE as defined in chapter 2 and the configuration as outlined in chapter 8 above. 18 / 36 BSI-DSZ-CC-0837-V2-2014 Certification Report Results of cryptographic assessment The strength of the cryptographic algorithms was not rated in the course of this certification procedure (see BSIG Section 9, Para. 4, Clause 2). But Cryptographic Functionalities with a security level of lower than 100 bits can no longer be regarded as secure without considering the application context. Therefore, for these functionalities it shall be checked whether the related crypto operations are appropriate for the intended system. Some further hints and guidelines can be derived from the 'Technische Richtlinie BSI TR-02102' (https://www.bsi.bund.de). Any Cryptographic Functionality that is marked in column 'Security Level above 100 Bits' of the following table with 'no' achieves a security level of lower than 100 Bits (in general context). No. Purpose Cryptographi c Mechanism Standard of Implementation Key Size in Bits Security Level above 100 Bits 1 Cryptographic Primitives 2-key Triple DES [FIPS-46-3] |k| = 112 No 2 3-key Triple DES [FIPS-46-3] |k| = 168 Yes 3 AES [FIPS-197] |k| = 128, 192, 256 Yes Table 5: TOE cryptographic functionality 10 Obligations and Notes for the Usage of the TOE The documents as outlined in table 2 contain necessary information about the usage of the TOE and all security hints therein have to be considered. In addition all aspects of Assumptions, Threats and OSPs as outlined in the Security Target not covered by the TOE itself need to be fulfilled by the operational environment of the TOE. The customer or user of the product shall consider the results of the certification within his system risk management process. In order for the evolution of attack methods and techniques to be covered, he should define the period of time until a re-assessment of the TOE is required and thus requested from the sponsor of the certificate. Some security measures are partly implemented in this certified TOE, but require additional configuration or control or measures to be implemented by a product layer on top, e.g. the IC Dedicated Support Software and/or Embedded Software using the TOE. For this reason the TOE includes guidance documentation (see table 2) which contains obligations and guidelines for the developer of the product layer on top on how to securely use this certified TOE and which measures have to be implemented in order to fulfil the security requirements of the Security Target of the TOE. In the course of the evaluation of the composite product or system it must be examined if the required measures have been correctly and effectively implemented by the product layer on top. Additionally, the evaluation of the composite product or system must also consider the evaluation results as outlined in the document ETR for composite evaluation [10]. 19 / 36 Certification Report BSI-DSZ-CC-0837-V2-2014 11 Security Target For the purpose of publishing, the Security Target [8] of the Target of Evaluation (TOE) is provided within a separate document as Annex A of this report. It is a sanitised version of the complete Security Target [6] used for the evaluation performed. Sanitisation was performed according to the rules as outlined in the relevant CCRA policy (see AIS 35 [4]). 12 Definitions Acronyms AES Advanced Encryption Standard AIS Application Notes and Interpretations of the Scheme BSI Bundesamt für Sicherheit in der Informationstechnik / Federal Office for Information Security, Bonn, Germany BSIG BSI-Gesetz / Act on the Federal Office for Information Security CBC Cipher Block Chaining CCRA Common Criteria Recognition Arrangement CC Common Criteria for IT Security Evaluation CEM Common Methodology for Information Technology Security Evaluation CMAC Cipher-based MAC DES Data Encryption Standard DF Desfire EAL Evaluation Assurance Level EEPROM Electrically Erasable Programmable Read Only Memory ETR Evaluation Technical Report FIPS Federal Information Processing Standard FOS Firmware Operating System FVEC Firmware Vector ISO International Organization for Standardization IT Information Technology ITSEC Information Technology Security Evaluation Criteria ITSEF Information Technology Security Evaluation Facility MFP Mifare Plus PCD Proximity Coupling Device PP Protection Profile RAM Random Access Memory ROM Read Only Memory SAR Security Assurance Requirement 20 / 36 BSI-DSZ-CC-0837-V2-2014 Certification Report SFP Security Function Policy SFR Security Functional Requirement ST Security Target TDES Triple-DES TOE Target of Evaluation TSF TOE Security Functionality Glossary Augmentation - The addition of one or more requirement(s) to a package. Collaborative Protection Profile - A Protection Profile collaboratively developed by an International Technical Community endorsed by the Management Committee. Extension - The addition to an ST or PP of functional requirements not contained in CC part 2 and/or assurance requirements not contained in CC part 3. Formal - Expressed in a restricted syntax language with defined semantics based on well-established mathematical concepts. Informal - Expressed in natural language. Object - A passive entity in the TOE, that contains or receives information, and upon which subjects perform operations. Package - named set of either security functional or security assurance requirements Protection Profile - A formal document defined in CC, expressing an implementation independent set of security requirements for a category of IT Products that meet specific consumer needs. Security Target - An implementation-dependent statement of security needs for a specific identified TOE. Semiformal - Expressed in a restricted syntax language with defined semantics. Subject - An active entity in the TOE that performs operations on objects. Target of Evaluation - An IT Product and its associated administrator and user guidance documentation that is the subject of an Evaluation. TOE Security Functionality - Combined functionality of all hardware, software, and firmware of a TOE that must be relied upon for the correct enforcement of the SFRs. 21 / 36 Certification Report BSI-DSZ-CC-0837-V2-2014 13 Bibliography [1] Common Criteria for Information Technology Security Evaluation, Version 3.1, Part 1: Introduction and general model, Revision 4, September 2012 Part 2: Security functional components, Revision 4, September 2012 Part 3: Security assurance components, Revision 4, September 2012 [2] Common Methodology for Information Technology Security Evaluation (CEM), Evaluation Methodology, Version 3.1, Rev. 4, September 2012 [3] BSI certification: Technical information on the IT security certification of products, protection profiles and sites (BSI 7138) and Requirements regarding the Evaluation Facility for the Evaluation of Products, Protection Profiles and Sites under the CC and ITSEC (BSI 7125) [4] Application Notes and Interpretations of the Scheme (AIS) as relevant for the TOE8 . [5] German IT Security Certificates (BSI 7148), periodically updated list published also in the BSI Website [6] Security Target BSI-DSZ-CC-0837-V2-2014, Version 2.1, 19 August 2014, NXP Secure Smart Card Controller P60x080/052/040PVC(Y/Z/A)/PVG Security Target, NXP Semiconductors (confidential document) [7] Security IC Platform Protection Profile, Version 1.0, 15 June 2007, BSI-CC-PP-0035-2007 [8] Security Target Lite BSI-DSZ-CC-0837-V2-2014, Version 2.1, 19 August 2014, NXP Secure Smart Card Controller P60x080/052/040PVC(Y/Z/A)/PVG Security Target Lite, NXP Semiconductors (sanitised public document) [9] Evaluation Technical Report, Version 2, 01 October 2014, EVALUATION TECHNICAL REPORT SUMMARY (ETR SUMMARY), TÜV Informationstechnik GmbH (confidential document) [10] ETR for composite evaluation according to AIS 36, Version 1, 02 September 2014, ETR FOR COMPOSITE EVALUATION (ETR-COMP), TÜV Informationstechnik GmbH (confidential document) [11] Configuration list for the TOE: 8 specifically • AIS 25, Version 8, Anwendung der CC auf Integrierte Schaltungen including JIL Document and CC Supporting Document • AIS 26, Version 9, Evaluationsmethodologie für in Hardware integrierte Schaltungen including JIL Document and CC Supporting Document • AIS 31, Version 3, Funktionalitätsklassen und Evaluationsmethodologie für physikalische Zufallszahlengeneratoren • AIS 32, Version 7, CC-Interpretationen im deutschen Zertifizierungsschema • AIS 34, Version 3, Evaluation Methodology for CC Assurance Classes for EAL5+ (CCv2.3 & CCv3.1) and EAL6 (CCv3.1) • AIS 35, Version 1, Öffentliche Fassung des Security Targets (ST-Lite) including JIL Document and CC Supporting Document and CCRA policies • AIS 38, Version 2, Reuse of evaluation results 22 / 36 BSI-DSZ-CC-0837-V2-2014 Certification Report • NXP Secure Smart Card Controller P60x080/052/040PVC(Y/Z/A)/PVG, Configuration List, Version 01.50, 01 July 2014, NXP Semiconductors, Business Unit Identification (confidential document) and • NXP Secure Smart Card Controller P60x080/052/040PVC, Customer specific Appendix of the Configuration List, Version 01.40, 01 July 2014, NXP Semiconductors, Business Unit Identification (confidential document) and • NXP Secure Smart Card Controller P60x080/052/040PVC, Appendix of the Configuration List for composite evaluation, Version 01.40, 05 August 2014, NXP Semiconductors, Business Unit Identification (confidential document) [12] NXP Secure Smart Card Controller P60x040/052/080 VC/VG, Information on Guidance and Operation, Guidance and Operation Manual, Version 1.1, 26 June 2014, NXP Semiconductors, Business Unit Identification (confidential document) 23 / 36 Certification Report BSI-DSZ-CC-0837-V2-2014 This page is intentionally left blank. 24 / 36 BSI-DSZ-CC-0837-V2-2014 Certification Report C Excerpts from the Criteria CC Part 1: Conformance Claim (chapter 10.4) “The conformance claim indicates the source of the collection of requirements that is met by a PP or ST that passes its evaluation. This conformance claim contains a CC conformance claim that: ● describes the version of the CC to which the PP or ST claims conformance. ● describes the conformance to CC Part 2 (security functional requirements) as either: – CC Part 2 conformant - A PP or ST is CC Part 2 conformant if all SFRs in that PP or ST are based only upon functional components in CC Part 2, or – CC Part 2 extended - A PP or ST is CC Part 2 extended if at least one SFR in that PP or ST is not based upon functional components in CC Part 2. ● describes the conformance to CC Part 3 (security assurance requirements) as either: – CC Part 3 conformant - A PP or ST is CC Part 3 conformant if all SARs in that PP or ST are based only upon assurance components in CC Part 3, or – CC Part 3 extended - A PP or ST is CC Part 3 extended if at least one SAR in that PP or ST is not based upon assurance components in CC Part 3. Additionally, the conformance claim may include a statement made with respect to packages, in which case it consists of one of the following: ● Package name Conformant - A PP or ST is conformant to a pre-defined package (e.g. EAL) if: – the SFRs of that PP or ST are identical to the SFRs in the package, or – the SARs of that PP or ST are identical to the SARs in the package. ● Package name Augmented - A PP or ST is an augmentation of a predefined package if: – the SFRs of that PP or ST contain all SFRs in the package, but have at least one additional SFR or one SFR that is hierarchically higher than an SFR in the package. – the SARs of that PP or ST contain all SARs in the package, but have at least one additional SAR or one SAR that is hierarchically higher than an SAR in the package. Note that when a TOE is successfully evaluated to a given ST, any conformance claims of the ST also hold for the TOE. A TOE can therefore also be e.g. CC Part 2 conformant. Finally, the conformance claim may also include two statements with respect to Protection Profiles: ● PP Conformant - A PP or TOE meets specific PP(s), which are listed as part of the conformance result. ● Conformance Statement (Only for PPs) - This statement describes the manner in which PPs or STs must conform to this PP: strict or demonstrable. For more information on this Conformance Statement, see Annex D.” 25 / 36 Certification Report BSI-DSZ-CC-0837-V2-2014 CC Part 3: Class APE: Protection Profile evaluation (chapter 10) “Evaluating a PP is required to demonstrate that the PP is sound and internally consistent, and, if the PP is based on one or more other PPs or on packages, that the PP is a correct instantiation of these PPs and packages. These properties are necessary for the PP to be suitable for use as the basis for writing an ST or another PP. Assurance Class Assurance Components Class APE: Protection Profile evaluation APE_INT.1 PP introduction APE_CCL.1 Conformance claims APE_SPD.1 Security problem definition APE_OBJ.1 Security objectives for the operational environment APE_OBJ.2 Security objectives APE_ECD.1 Extended components definition APE_REQ.1 Stated security requirements APE_REQ.2 Derived security requirements APE: Protection Profile evaluation class decomposition” Class ASE: Security Target evaluation (chapter 11) “Evaluating an ST is required to demonstrate that the ST is sound and internally consistent, and, if the ST is based on one or more PPs or packages, that the ST is a correct instantiation of these PPs and packages. These properties are necessary for the ST to be suitable for use as the basis for a TOE evaluation.” Assurance Class Assurance Components Class ASE: Security Target evaluation ASE_INT.1 ST introduction ASE_CCL.1 Conformance claims ASE_SPD.1 Security problem definition ASE_OBJ.1 Security objectives for the operational environment ASE_OBJ.2 Security objectives ASE_ECD.1 Extended components definition ASE_REQ.1 Stated security requirements ASE_REQ.2 Derived security requirements ASE_TSS.1 TOE summary specification ASE_TSS.2 TOE summary specification with architectural design summary ASE: Security Target evaluation class decomposition 26 / 36 BSI-DSZ-CC-0837-V2-2014 Certification Report Security assurance components (chapter 7) “The following Sections describe the constructs used in representing the assurance classes, families, and components.“ “Each assurance class contains at least one assurance family.” “Each assurance family contains one or more assurance components.” The following table shows the assurance class decomposition. Assurance Class Assurance Components ADV: Development ADV_ARC.1 Security architecture description ADV_FSP.1 Basic functional specification ADV_FSP.2 Security-enforcing functional specification ADV_FSP.3 Functional specification with complete summary ADV_FSP.4 Complete functional specification ADV_FSP.5 Complete semi-formal functional specification with additional error information ADV_FSP.6 Complete semi-formal functional specification with additional formal specification ADV_IMP.1 Implementation representation of the TSF ADV_IMP.2 Implementation of the TSF ADV_INT.1 Well-structured subset of TSF internals ADV_INT.2 Well-structured internals ADV_INT.3 Minimally complex internals ADV_SPM.1 Formal TOE security policy model ADV_TDS.1 Basic design ADV_TDS.2 Architectural design ADV_TDS.3 Basic modular design ADV_TDS.4 Semiformal modular design ADV_TDS.5 Complete semiformal modular design ADV_TDS.6 Complete semiformal modular design with formal high-level design presentation AGD: Guidance documents AGD_OPE.1 Operational user guidance AGD_PRE.1 Preparative procedures ALC: Life cycle support ALC_CMC.1 Labelling of the TOE ALC_CMC.2 Use of a CM system ALC_CMC.3 Authorisation controls ALC_CMC.4 Production support, acceptance procedures and automation ALC_CMC.5 Advanced support ALC_CMS.1 TOE CM coverage ALC_CMS.2 Parts of the TOE CM coverage ALC_CMS.3 Implementation representation CM coverage ALC_CMS.4 Problem tracking CM coverage ALC_CMS.5 Development tools CM coverage ALC_DEL.1 Delivery procedures ALC_DVS.1 Identification of security measures ALC_DVS.2 Sufficiency of security measures ALC_FLR.1 Basic flaw remediation ALC_FLR.2 Flaw reporting procedures ALC_FLR.3 Systematic flaw remediation ALC_LCD.1 Developer defined life-cycle model 27 / 36 Certification Report BSI-DSZ-CC-0837-V2-2014 Assurance Class Assurance Components ALC_LCD.2 Measurable life-cycle model ALC_TAT.1 Well-defined development tools ALC_TAT.2 Compliance with implementation standards ALC_TAT.3 Compliance with implementation standards - all parts ATE: Tests ATE_COV.1 Evidence of coverage ATE_COV.2 Analysis of coverage ATE_COV.3 Rigorous analysis of coverage ATE_DPT.1 Testing: basic design ATE_DPT.2 Testing: security enforcing modules ATE_DPT.3 Testing: modular design ATE_DPT.4 Testing: implementation representation ATE_FUN.1 Functional testing ATE_FUN.2 Ordered functional testing ATE_IND.1 Independent testing – conformance ATE_IND.2 Independent testing – sample ATE_IND.3 Independent testing – complete AVA: Vulnerability assessment AVA_VAN.1 Vulnerability survey AVA_VAN.2 Vulnerability analysis AVA_VAN.3 Focused vulnerability analysis AVA_VAN.4 Methodical vulnerability analysis AVA_VAN.5 Advanced methodical vulnerability analysis Assurance class decomposition Evaluation assurance levels (chapter 8) “The Evaluation Assurance Levels (EALs) provide an increasing scale that balances the level of assurance obtained with the cost and feasibility of acquiring that degree of assurance. The CC approach identifies the separate concepts of assurance in a TOE at the end of the evaluation, and of maintenance of that assurance during the operational use of the TOE. It is important to note that not all families and components from CC Part 3 are included in the EALs. This is not to say that these do not provide meaningful and desirable assurances. Instead, it is expected that these families and components will be considered for augmentation of an EAL in those PPs and STs for which they provide utility.” Evaluation assurance level (EAL) overview (chapter 8.1) “Table 1 represents a summary of the EALs. The columns represent a hierarchically ordered set of EALs, while the rows represent assurance families. Each number in the resulting matrix identifies a specific assurance component where applicable. As outlined in the next Section, seven hierarchically ordered evaluation assurance levels are defined in the CC for the rating of a TOE's assurance. They are hierarchically ordered inasmuch as each EAL represents more assurance than all lower EALs. The increase in assurance from EAL to EAL is accomplished by substitution of a hierarchically higher assurance component from the same assurance family (i.e. increasing rigour, scope, and/or depth) and from the addition of assurance components from other assurance families (i.e. adding new requirements). These EALs consist of an appropriate combination of assurance components as described in Chapter 7 of this CC Part 3. More precisely, each EAL includes no more than one 28 / 36 BSI-DSZ-CC-0837-V2-2014 Certification Report component of each assurance family and all assurance dependencies of every component are addressed. While the EALs are defined in the CC, it is possible to represent other combinations of assurance. Specifically, the notion of “augmentation” allows the addition of assurance components (from assurance families not already included in the EAL) or the substitution of assurance components (with another hierarchically higher assurance component in the same assurance family) to an EAL. Of the assurance constructs defined in the CC, only EALs may be augmented. The notion of an “EAL minus a constituent assurance component” is not recognised by the standard as a valid claim. Augmentation carries with it the obligation on the part of the claimant to justify the utility and added value of the added assurance component to the EAL. An EAL may also be augmented with extended assurance requirements. Evaluation assurance level 1 (EAL1) - functionally tested (chapter 8.3) “Objectives EAL1 is applicable where some confidence in correct operation is required, but the threats to security are not viewed as serious. It will be of value where independent assurance is required to support the contention that due care has been exercised with respect to the protection of personal or similar information. EAL1 requires only a limited security target. It is sufficient to simply state the SFRs that the TOE must meet, rather than deriving them from threats, OSPs and assumptions through security objectives. EAL1 provides an evaluation of the TOE as made available to the customer, including independent testing against a specification, and an examination of the guidance documentation provided. It is intended that an EAL1 evaluation could be successfully conducted without assistance from the developer of the TOE, and for minimal outlay. An evaluation at this level should provide evidence that the TOE functions in a manner consistent with its documentation.” Evaluation assurance level 2 (EAL2) - structurally tested (chapter 8.4) “Objectives EAL2 requires the co-operation of the developer in terms of the delivery of design information and test results, but should not demand more effort on the part of the developer than is consistent with good commercial practise. As such it should not require a substantially increased investment of cost or time. EAL2 is therefore applicable in those circumstances where developers or users require a low to moderate level of independently assured security in the absence of ready availability of the complete development record. Such a situation may arise when securing legacy systems, or where access to the developer may be limited.” Evaluation assurance level 3 (EAL3) - methodically tested and checked (chapter 8.5) “Objectives EAL3 permits a conscientious developer to gain maximum assurance from positive security engineering at the design stage without substantial alteration of existing sound development practises. 29 / 36 Certification Report BSI-DSZ-CC-0837-V2-2014 EAL3 is applicable in those circumstances where developers or users require a moderate level of independently assured security, and require a thorough investigation of the TOE and its development without substantial re-engineering.” Evaluation assurance level 4 (EAL4) - methodically designed, tested, and reviewed (chapter 8.6) “Objectives EAL4 permits a developer to gain maximum assurance from positive security engineering based on good commercial development practises which, though rigorous, do not require substantial specialist knowledge, skills, and other resources. EAL4 is the highest level at which it is likely to be economically feasible to retrofit to an existing product line. EAL4 is therefore applicable in those circumstances where developers or users require a moderate to high level of independently assured security in conventional commodity TOEs and are prepared to incur additional security-specific engineering costs.” Evaluation assurance level 5 (EAL5) - semiformally designed and tested (chapter 8.7) “Objectives EAL5 permits a developer to gain maximum assurance from security engineering based upon rigorous commercial development practises supported by moderate application of specialist security engineering techniques. Such a TOE will probably be designed and developed with the intent of achieving EAL5 assurance. It is likely that the additional costs attributable to the EAL5 requirements, relative to rigorous development without the application of specialised techniques, will not be large. EAL5 is therefore applicable in those circumstances where developers or users require a high level of independently assured security in a planned development and require a rigorous development approach without incurring unreasonable costs attributable to specialist security engineering techniques.” Evaluation assurance level 6 (EAL6) - semiformally verified design and tested (chapter 8.8) “Objectives EAL6 permits developers to gain high assurance from application of security engineering techniques to a rigorous development environment in order to produce a premium TOE for protecting high value assets against significant risks. EAL6 is therefore applicable to the development of security TOEs for application in high risk situations where the value of the protected assets justifies the additional costs.” Evaluation assurance level 7 (EAL7) - formally verified design and tested (chapter 8.9) “Objectives EAL7 is applicable to the development of security TOEs for application in extremely high risk situations and/or where the high value of the assets justifies the higher costs. Practical application of EAL7 is currently limited to TOEs with tightly focused security functionality that is amenable to extensive formal analysis.” 30 / 36 BSI-DSZ-CC-0837-V2-2014 Certification Report Assurance Class Assurance Family Assurance Components by Evaluation Assurance Level EAL1 EAL2 EAL3 EAL4 EAL5 EAL6 EAL7 Development ADV_ARC 1 1 1 1 1 1 ADV_FSP 1 2 3 4 5 5 6 ADV_IMP 1 1 2 2 ADV_INT 2 3 3 ADV_SPM 1 1 ADV_TDS 1 2 3 4 5 6 Guidance Documents AGD_OPE 1 1 1 1 1 1 1 AGD_PRE 1 1 1 1 1 1 1 Life cycle Support ALC_CMC 1 2 3 4 4 5 5 ALC_CMS 1 2 3 4 5 5 5 ALC_DEL 1 1 1 1 1 1 ALC_DVS 1 1 1 2 2 ALC_FLR ALC_LCD 1 1 1 1 2 ALC_TAT 1 2 3 3 Security Target Evaluation ASE_CCL 1 1 1 1 1 1 1 ASE_ECD 1 1 1 1 1 1 1 ASE_INT 1 1 1 1 1 1 1 ASE_OBJ 1 2 2 2 2 2 2 ASR_REQ 1 2 2 2 2 2 2 ASE_SPD 1 1 1 1 1 1 ASE_TSS 1 1 1 1 1 1 1 Tests ATE_COV 1 2 2 2 3 3 ATE_DPT 1 1 3 3 4 ATE_FUN 1 1 1 1 2 2 ATE_IND 1 2 2 2 2 2 3 Vulnerability assessment AVA_VAN 1 2 2 3 4 5 5 Table 1: Evaluation assurance level summary” 31 / 36 Certification Report BSI-DSZ-CC-0837-V2-2014 Class AVA: Vulnerability assessment (chapter 16) “The AVA: Vulnerability assessment class addresses the possibility of exploitable vulnerabilities introduced in the development or the operation of the TOE.” Vulnerability analysis (AVA_VAN) (chapter 16.1) “Objectives Vulnerability analysis is an assessment to determine whether potential vulnerabilities identified, during the evaluation of the development and anticipated operation of the TOE or by other methods (e.g. by flaw hypotheses or quantitative or statistical analysis of the security behaviour of the underlying security mechanisms), could allow attackers to violate the SFRs. Vulnerability analysis deals with the threats that an attacker will be able to discover flaws that will allow unauthorised access to data and functionality, allow the ability to interfere with or alter the TSF, or interfere with the authorised capabilities of other users.” 32 / 36 BSI-DSZ-CC-0837-V2-2014 Certification Report D Annexes List of annexes of this certification report Annex A: Security Target provided within a separate document. Annex B: Evaluation results regarding development and production environment 33 / 36 Certification Report BSI-DSZ-CC-0837-V2-2014 This page is intentionally left blank. 34 / 36 BSI-DSZ-CC-0837-V2-2014 Certification Report Annex B of Certification Report BSI-DSZ-CC-0837-V2-2014 Evaluation results regarding development and production environment The IT product NXP Secure Smart Card Controller P60x080/052/040PVC(Y/Z/A)/PVG with IC Dedicated Software (Target of Evaluation, TOE) has been evaluated at an approved evaluation facility using the Common Methodology for IT Security Evaluation (CEM), Version 3.1 extended by advice of the Certification Body for components beyond EAL 5 and guidance specific for the technology of the product for conformance to the Common Criteria for IT Security Evaluation (CC), Version 3.1. As a result of the TOE certification, dated 24 October 2014, the following results regarding the development and production environment apply. The Common Criteria assurance requirements ALC – Life cycle support (i.e. ALC_CMC.5, ALC_CMS.5, ALC_DEL.1, ALC_DVS.2, ALC_FLR.1, ALC_LCD.1 and ALC_TAT.3) are fulfilled for the development and production sites of the TOE listed below: Site and address Function NXP Semiconductors Hamburg Business Unit Identification (BU ID) Stresemannallee 101 22569 Hamburg Germany Development, Delivery and customer support TSMC, Fab 2 and 5 No. 121 Park Ave. III Hsinchu Science Park Hsinchu, Taiwan 300, R.O.C. Mask data preparation TSMC, Fab 7 No. 6, Creation Rd. II Hsinchu Science Park Hsinchu, Taiwan 300, R.O.C. Mask data preparation TSMC, Fab 6 and Fab 14 No. 1, Nan-Ke North Rd. Tainan Science Park Tainan, Taiwan 741, R.O.C. Mask and wafer production Chipbond Technology Corporation No. 3, Li-Hsin Rd. V Science Based Industrial Park Hsin-Chu City Taiwan, R.O.C. Bumping NXP Semiconductors GmbH Hamburg Test Center Europe - Hamburg (TCE- H) Stresemannallee 101 22569 Hamburg Germany Test Center and configuration of the Fabkey Assembly Plant Bangkok 303 Moo 3 Chaengwattana Rd. Laksi, Bangkok 10210 Thailand Test Center, Delivery and Module assembly Assembly Plant Kaohsiung NXP Semiconductors Taiwan Ltd #10, Jing 5th Road, N.E.P.Z, Kaohsiung 81170 Taiwan, R.O.C Module assembly and test center SMARTRAC Technology Ltd. Bangkok Street: 142 Moo, Hi-Tech Industrial Estate Tambon Ban Laean, Amphor Bang- Pa-In 13160 Ayutthaya Thailand Inlay assembly 35 / 36 Certification Report BSI-DSZ-CC-0837-V2-2014 Site and address Function SMARTRAC TECHNOLOGY GERMANY GmbH Gewerbeparkstr. 10 51580 Reichshof-Wehnrath Germany Inlay assembly HID Global Teoranta Paic Tionscail na Tulaigh Balle na hAbhann Co. Galway Ireland Inlay assembly NXP Semiconductors Austria GmbH Styria Business Unit Identification (BU ID) Mikron-Weg 1 8108 Gratkorn Austria Document control NedCard B.V. Bijsterhuizen 25-29 6604 LM Wijchen The Netherlands Module assembly The site of this SST is NXP Nijmegen, located at the campus: NXP Semiconductors Netherlands B.V. Gerstweg 2 6534AE Nijmegen The Netherlands Development and Manufacturing NXP High Tech Campus Building 60, High Tech Campus Secure Room 131 5656AE, Eindhoven The Netherlands Regional Quality Center - Europe, Tape Out Office, and Materials Management Department Atos Bydgoszcz Building BETA Secure Room B20S1 Biznes Park ul. Kraszewskiego 1 85-240 Bydgoszcz Poland IT Engineering and Generic Support Ardentec Corporation (T Site) Ardentec Corporation No. 3, Gungye 3rd Rd. Hsin-Chu Industrial Park, Hu-Kou, Hsin-Chu Hsien Taiwan 30351, R.O.C. Wafer Testing NedCard (Shanghai) Microelectronics Co Ltd. Standardized Plant Building #8 No. 789 Puxing Road Caohejing Hi-Tech Park, EPZ 201114 Shanghai, People’s Republic of China Module Assembly Table 6: Production Sites For the sites listed above, the requirements have been specifically applied in accordance with the Security Target [6]. The evaluators verified, that the threats, security objectives and requirements for the TOE life cycle phases up to delivery (as stated in the Security Target [6] and [8]) are fulfilled by the procedures of these sites. 36 / 36