

COMMON CRITERIA RECOGNITION ARRANGEMENT FOR COMPONENTS UP TO EAL 4

Certification Report

EAL 5+ (AVA_VAN.5)

Evaluation of

TÜBİTAK BİLGEM UEKAE NATIONAL SMARTCARD IC (UKTÜM) UKT23T64H v4 WITH DES – 3DES v4.2, AES256 v4.2, RSA2048 v4.2 LIBRARIES AND WITH IC DEDICATED SOFTWARE

issued by

Turkish Standards Institution Common Criteria Certification Scheme

 Date
 : 02.07.2012

 Pages
 : 41

 Certification Report
 :

 Number
 : 14.10.01/2012-234

This page left blank on purpose.

Document No: PCC-03-FR-060

Date of Issue: 18/12/2007 Date of Rev: 17/03/2011 Rev. No : 05

Page : 3 / 41

TABLE OF CONTENTS:

1.	INTRODUCTION	5
2.	GLOSSARY	6
3.	EXECUTIVE SUMMARY	7
4.	IDENTIFICATION	
5.	SECURITY POLICY	
6.	ARCHITECTURAL INFORMATION	
7.	ASSUMPTIONS AND CLARIFICATION OF SCOPE	
8.	DOCUMENTATION	
9.	IT PRODUCT TESTING	
10.	EVALUATED CONFIGURATION	
11.	RESULTS OF THE EVALUATION	
12.	EVALUATOR COMMENTS/ RECOMMENDATIONS	
13.	CERTIFICATION AUTHORITY COMMENTS/ RECOMMENDATIONS	
14.	SECURITY TARGET	
15.	BIBLIOGRAPHY	
16.	APPENDICES	

Document No: PCC-03-FR-060

Date of Issue: 18/12/2007 Date of Rev: 17/03/2011 Rev. No : 05

Page : 4 / 41

This page left blank on purpose.

Document No: PCC-03-FR-060

Date of Issue: 18/12/2007 Date of Rev: 17/03/2011 Rev. No : 05

Page : 5 / 41

CERTIFICATION REPORT

The Certification Report is drawn up to submit the Certification Committee the results and evaluation information upon the completion of a Common Criteria evaluation service performed under the Common Criteria Certification Scheme.

Certification Report covers all non-confidential security and technical information related with a Common Criteria evaluation which is made under the PCC Common Criteria Certification Scheme. This report is issued publicly to and made available to all relevant parties for reference and use.

1. INTRODUCTION

The Common Criteria Certification Scheme (CCSS) provides an evaluation and certification service to ensure the reliability of Information Security (IS) products. Evaluation and tests are conducted by a public or commercial Common Criteria Evaluation Facility (CCTL) under CCCS' supervision.

CCEF is a facility, licensed as a result of inspections carried out by CCCS for performing tests and evaluations which will be the basis for Common Criteria certification. As a prerequisite for such certification, the CCEF has to fulfill the requirements of the standard ISO/IEC 17025 and should be accredited with respect to that standard by the Turkish Accreditation Agency (TÜRKAK), the national accreditation body in Turkey. The evaluation and tests related with the concerned product have been performed by TÜBİTAK-BİLGEM-OKTEM, which is a public/commercial CCTL.

A Common Criteria Certificate given to a product means that such product meets the security requirements defined in its security target document that has been approved by the CCCS. The Security Target document is where requirements defining the scope of evaluation and test activities are set forth. Along with this certification report, the user of the IT product should also review the security target document in order to understand any assumptions made in the course of evaluations, the environment where the IT product will run, security requirements of the IT product and the level of assurance provided by the product.

Document No: PCC-03-FR-060 Date of Issue: 18/1

Date of Issue: 18/12/2007 Date of Rev: 17/03/2011 Rev. No : 05 Page : 6 / 41

This certification report is associated with the Common Criteria Certificate issued by the CCCS for NATIONAL SMARTCARD IC (UKTÜM) UKT23T64H v4 WITH DES – 3DES v4.2, AES256 v4.2, RSA2048 v4.2 LIBRARIES AND WITH IC DEDICATED SOFTWARE whose evaluation was completed on 06.04.2012 and whose evaluation technical report was drawn up by OKTEM(as CCTL), and with the Security Target document with version no 06 of the relevant product.

2. GLOSSARY

CCCS:	Common Criteria Certification Scheme				
CCTL:	Common Criteria Test Laboratory				
CCMB:	Common Criteria Management Board				
CEM:	Common Evaluation Methodology				
AKiS:	Smart Card Operating System (Akıllı Kart İşletim Sistemi)				
ETR:	Evaluation Technical Report				
IT:	Information Technology				
OKTEM:	Common Criteria Test Center (as CCTL)				
PCC:	Product Certification Center				
ST:	Security Target				
TOE:	TOE: Target of Evaluation				
TSF:	TOE Security Function				
TSFI:	TSF Interface				
SFR:	Security Functional Requirement				
TÜBİTAK:	Turkish Scientific and Technological Research Council				
TÜRKAK:	Turkish Accreditation Agency				
BİLGEM:	Center of Research For Advanced Technologies of Informatics and Information Security				
UEKAE:	National Electronics and Cryptology Research Institute				
EAL:	Evaluation Assurance Level				
PP:	Protection Profile				
L	Table 1 - Glossary				

Document No: PCC-03-FR-060

Date of Issue: 18/12/2007 Date of Rev: 17/03/2011 Rev. No : 05

Page : 7 / 41

3. EXECUTIVE SUMMARY

Evaluated IT product name:

NATIONAL SMARTCARD IC (UKTÜM) UKT23T64H v4 WITH DES – 3DES v4.2, AES256 v4.2, RSA2048 v4.2 LIBRARIES AND WITH IC DEDICATED SOFTWARE

IT Product version:

v4

Developer`s Name:

TÜBİTAK BİLGEM UEKAE YİTAL

Name of CCTL :

TÜBİTAK BİLGEM OKTEM Common Criteria Test Laboratory

Completion date of evaluation :

06.04.2012

Common Criteria Standard version :

- Common Criteria for Information Technology Security Evaluation, Part 1: Introduction and General Model, Version 3.1, Revision 3, July 2009
- Common Criteria for Information Technology Security Evaluation, Part 2: Security Functional Components, Version 3.1, Revision 3, July 2009
- Common Criteria for Information Technology Security Evaluation, Part 3: Security Assurance Components, Version 3.1, Revision 3, July 2009

Common Criteria Evaluation Method version :

• Common Methodology for Information Technology Security Evaluation v3.1 rev3, July 2009

Short summary of the Report:

1) Assurance Package :

EAL 5+(AVA_VAN.5)

2) Functionality :

UKT23T64H v4 is a contact-based smartcard IC which is designed and developed for security-based applications. It is aimed that this smartcard IC is utilised as Turkish national ID Card

Document No: PCC-03-FR-060

Date of Issue: 18/12/2007 Date of Rev: 17/03/2011 Rev. No : 05

Page: 8 / 41

and national Health Card where secrecy and security is an issue.

National Smart Card IC, UKT23T64H v4, consists of an 8052-type microprocessor with a 256 Byte internal memory, a 64K ROM, a 6K Test ROM, a 64K Flash memory, an 8K Static RAM, and a True Random Number Generator. Furthermore, it is equipped with the hardware implementations of the RSA2048, the DES-3DES and the AES ciphering algorithms. The operating system software, embedded on 64 K ROM, is specifically developed for the TOE; however, it is not a part of the TOE. The Test ROM stores the IC Dedicated Software used to support testing of the TOE during production. The TOE includes hardware of UKT23T64H v4 smartcard IC, IC Dedicated Software, Flash memory access library, and user libraries of the DES-3DES, AES, and RSA algorithms, and related documentation. UKT23T64H v4 communicates with the outer environment through a smartcard reader in accordance with ISO/IEC 7816-3 protocol. Smartcard IC is designed to be resistant against power and fault attacks. In addition, it is equipped with security sensors which sense physical attacks and environmental operating conditions.

Operating State Checking	The TOE which can only be operated	
	correctly under the specified conditions is	
	equipped with different type of sensors	
	monitoring the operating parameters to detect if	
	the specified operating conditions are fulfilled.	
	For this purpose, TOE includes temperature	
	sensors, supply voltage sensor, internal voltage	
	sensor and clock frequency sensor. If one of	
	these sensors raises an alarm due to a violation	
	in the operating conditions, than the circuit	
	enters to reset state.	
	In addition, the TOE enters to reset	
	state when the contents of the critical registers	

TOE SECURITY FUNCTIONS

	RODUCT CERTIFICATION CENTER ON CRITERIA CERTIFICATION SCHEME CERTIFICATION REPORT		
Oocument No: PCC-03-FR-060	Date of Issue: 18/12/2007 Date of Rev: 17/03/2011 Rev. No : 05 Page : 9 / 41		
	ensuring the correct operation of the TOE are		
	corrupted as a result of fault attacks.		
	These functions satisfy FPT_FLS.1		
	"Failure with Preservation of Secure State"		
	requirement.		
	On the other hand, when the		
	sensors and the critical registers do not raise		
	any alarm, the TOE functions properly, thus,		
	FRU_FLT.2 "Limited Fault Tolerance"		
	requirement is satisfied.		
Phase Management	During the chip development and		
	production phases of the life cycle (Phase		
	2,3,4), the TOE is always in Test Mode		
	enabling the operation of the IC Dedicated		
	Software which is used to perform the die tests		
	and to inject pre-personalisation data to the		
	correctly working chips. After TOE delivery		
	(Phase 5-7), the TOE is in User Mode where IC		
	Dedicated Software is irreversibly disabled and		
	the operation of the Smartcard Embedded		
	Software is made available.		
	During start-up of the circuit, TOE		
	decides whether it is in the User Mode or the		
	Test Mode by checking some phase		
	management flags. If it is in the Test Mode, the		
	TOE requests authentication before doing any		
	other operation. Thus FMT.LIM.1 and		
FMT.LIM.2 requirements are satisfied.			

Document No: PCC-03-FR-060 Date of Issue: 18/12/2007 Date of Rev: 17/03/2011 Rev. No : 05 Page : 10 / 4						
ocument No:	PCC-03-FR-060	Date of Issue: 18/12/2007	Date of Rev: 17/03/2011	Rev. No : 05	Page: 10	
			Both in Tes	t Mode and U	ser Mode,	
			the chip identification d	ata can be ac	cessible	
			satisfying FAU_SAS.1			
Protection	on Against Snoo	ping	There exist	different m	easures to	
			protect the design of the			
			stored in the TOE when			
			and also when the pow		-	
			TOE.	11		
				urface of the		
			covered by metal lines v		-	
			order to prevent the attacker from probing and			
			acquiring any useful data. In case of sensing a			
			short-circuit or an open-circuit on the active			
			shield the smartcard IC enters to reset state.			
			The layout of the logic circuit			
			including the microprocessor core is effectively			
			randomised making it difficult to determine			
			specific functional areas for reverse			
			engineering.			
			The microp	rocessor in		
			UKT23T64H v4 is desi	gned in a uni	que and	
			non standard way. Ther	efore, reverse	;	
			engineering works need	much more	effort.	
			In the TOE,	the data and	address	
			busses between micropi	cocessor and t	he DES,	
			the AES and the RSA b			
			against probing.			

Document No: PCC-03-FR-0	Dete of Issue: 18/12/2007	Date of Rev: 17/03/2011	Rev. No : 05	Page: 11/4	
		In the TOE,	the data is er	crypted in	
		the SRAM and in the Flash memory. Thus,			
		there are no plain data o	n the busses	between	
		microprocessor and mer	nories.		
			the data and		
	busses are encrypted in the ROM who				
		operating system is emb			
		and address busses are e	• 1	ween	
		ROM and the microproc	cessor.		
		Even if the a	attacker reads	the	
		content of the ROM by	reverse engin	eering,	
		since the data is encrypt	ed, the attack	er does	
		not obtain any useful da	ta about the		
		microprocessors software.			
			ures satisfy th	•	
		functional requirement of FPT_PHP.3,			
		"Resistance to physical	attack".		
Data Encryption an	nd Data Disguising	In order to p	protect TOE a	gainst data	
		analysis on stored and in	nternally tran	sferred	
		data, the data is encrypt	ed on chip be	fore it is	
		written in the SRAM an	d flash memo	ories.	
			ncryption in		
		communication betweer			
		RSA blocks and the mic			
		the interpretation of the leaked data. Random			
		data is inserted into the data and address busses			
		on the same purpose.			

Document No: PCC-03-FR-060

Date of Issue: 18/12/2007 Date of Rev: 17/03/2011 Rev. No : 05

5 Page : 12 / 41

	The hardware implementation of
	the DES, the AES and the RSA algorithms are
	implemented to be resistant against side
	channel attacks. This prevents the secure data
	leakage.
	These security functions of the
	TOE cover the FDP_ITT.1 "Basic Internal
	Transfer Protection" and FTP_ITT.1 "Basic
	Internal TSF Data Transfer Protection". The
	encryption covers the "Data Processing Policy"
	and FDP_IFC.1 "Subset Information Flow
	Control".
Random Number Generation	The UKT23T64H v4 is equipped with a
	physical random number generator which
	generates truly random numbers. The generated
	random numbers can be used by the operating
	system software and also by TOE's security
	enforcing functions. The TOE has the
	capability to subject the generated numbers to
	the monobit, poker, runs, long run and auto
	correlation tests defined in FIBS-140-2. The
	covered security functional requirement is
	FCS_RND.1.
TSF Self Test	The TOE has the hardware supports
	making available the test of its security
	enforcing functions SEF1 and SEF7 by the
	operating system software. The security
	enforcing function SEF5 can be tested directly

Document No:	PCC-03-FR-060	Date of Issue: 18/12/2007	7 Date of Rev: 17/03/2011	Rev. No : 05	Page : 13 / 4
			from the operating system software. Since T self test will detect the attempts to modify sensor devices and random number generator the covered security functional requirement in FPT_TST.2.		
Notificat	ion of Physical A	An active shield formed by the metal lines with active signals protects the entire surface of the TOE against physical attacks. Since physical attacks over the surface need to modify the active shield lines, the detection of opened or shortened lines will notify a physical attack covering the security functional requirement FPT_PHP.3.			
Cryptog	raphic Support		The TOE is equipped with the hardwith the hardwith the hardwith the hardwith the hardwith the DES/DES3, AES and RSA cryptographic functions. The covered security functional requirement is FCS_CO		AES and
Table 2 – TOE Security Functions					

Document No: PCC-03-FR-060

 Date of Issue: 18/12/2007
 Date of Rev: 17/03/2011
 Rev. No : 05
 Page : 14 / 41

3) Summary of Threats addressed by the evaluated IT product: Threats:

The TOE counter the threats presented in the table below and provide functions for countermeasure to them.

T. Leak-Inherent	An attacker may exploit information
	which is leaked from the TOE during usage of
	the Security IC in order to disclose confidential
	User Data as part of the assets. No direct
	contact with the Security IC internals is
	required here. Leakage may occur through
	emanations, variations in power consumption,
	I/O characteristics, clock frequency, or by
	changes in processing time requirements. One
	example is Differential Power Analysis (DPA).
	This leakage may be interpreted as a covert
	channel transmission but is more closely
	related to measurement of operating
	parameters, which may be derived either from
	direct (contact) measurements or measurement
	of emanations and can then be related to the
	specific operation being performed.
T. Phys-Probing	An attacker may perform physical
	probing of the TOE in order
	• to disclose User Data,
	• to disclose/reconstruct the Security IC
	Embedded Software or
	• to disclose other critical information about
	the operation of the TOE to enable attacks
	disclosing or manipulating the User Data or

Document No: PCC-03-FR-060

Date of Issue: 18/12/2007 Date of Rev: 17/03/2011 Rev. No : 05 Page : 15 / 41

the Security IC Embedded Software. Physical probing requires direct interaction with the Security IC internals. Techniques commonly employed in IC failure analysis and IC reverse engineering efforts may be used. Before that hardware security mechanisms and layout characteristics need to be identified. Determination of software design including treatment of User Data may also be a prerequisite. This pertains to "measurements" using galvanic contacts or any type of charge interaction whereas manipulations are considered under the threat "Physical Manipulation (T.Phys-Manipulation)". The threats "Inherent Information Leakage (T.Leak-Inherent)" and "Forced Information Leakage (T.Leak-Forced)" may use physical probing but require complex signal processing as well. **T. Phys-Manipulation** An attacker may physically modify the Security IC in order to • modify User Data, • modify Embedded the Security IC Software, • modify or deactivate security services of the TOE, or • modify security mechanisms of the TOE

PRODUCT CERTIFI COMMON CRITERIA CEN CERTIFICATI		RT	IFICATION SCHEME		Common Criteria			
Do	ocument No: F	PCC-03-FR-060	Date of Issue: 18/12/2007	7	Date of Rev: 17/03/2011	Rev. No : 05	Page: 16/41	
Ιſ				to enable attacks disclosing or manipulating				
					the User Data or the	Security IC	Embedded	
				Software.				
					The modification	may be achi	eved	
				th	rough techniques com	monly emplo	oyed in IC	
				fai	ilure analysis and IC r	everse engin	eering	
				eff	forts. The modification	n may result	in the	
				de	eactivation of a securit	y feature. Be	fore that	
				ha	rdware security mech	anisms and la	ayout	
				ch	aracteristics need to b	e identified.		
				Determination of software design including				
				treatment of User Data may also be a pre-				
				requisite. Changes of circuitry or data can be				
				permanent or temporary. In contrast to				
				malfunctions (refer to T.Malfunction) the				
				attacker requires to gather significant				
				knowledge about the TOE's internal				
				construction here.				
	T. Malfur	nction			An attacker may	cause a malf	unction of	
				TS	SF or of the Security I	C Embedded	Software	
				by	applying environment	ntal stress in o	order to	
					• modify security ser	vices of the T	TOE or	
					• modify functions	of the Se	ecurity IC	
			Embedded Software					
					• deactivate or affect	security mec	hanisms of	
					the TOE to enable	attacks dis	sclosing or	
				manipulating the User Data or the Security			ne Security	
	•						1	

PRODUCT CERTIFICATION CENTER COMMON CRITERIA CERTIFICATION SCHEME CERTIFICATION REPORT

Document No: PCC-03-FR-060

Date of Issue: 18/12/2007 Date of Rev: 17/03/2011 Rev. No : 05 Page : 17 / 41

IC Embedded Software.

	This may be achieved by operating the		
	Security IC outside the normal operating		
	conditions. The modification of security		
	services of the TOE may e.g. affect the quality		
	of random numbers provided by the random		
	number generator up to undetected deactivation		
	when the random number generator does not		
	produce random numbers and the Security IC		
	Embedded Software gets constant values. In		
	another case, errors are introduced in executing		
	the Security IC Embedded Software. To exploit		
	this, an attacker needs information about the		
	functional operation, e.g., to introduce a		
	temporary failure within a register used by the		
	Security IC Embedded Software with light or a		
	power glitch.		
T. Leak_Forced	An attacher man annlait information		
	An attacker may exploit information		
	which is leaked from the TOE during usage of		
	the Security IC in order to disclose confidential		
	User Data as part of the assets even if the		
	information leakage is not inherent but caused		
	by the attacker.		
	This threat pertains to attacks where		
	methods described in "Malfunction due to		
	Environmental Stress" (refer to T.Malfunction)		
	and/or "Physical Manipulation" (refer to		
	1		
	T.Phys-Manipulation) are used to cause		

Document No:	PCC-03-FR-060	Date of Issue: 18/12/2007	Date of Rev: 17/03/2011	Rev. No : 05	Page : 18 / 4
			leakage from signals wh	ich normally	do not
			contain significant infor	mation about	secrets.
T. Abuse	-Func				
1.1005			An attacker may		
			TOE which may not be	used after TC)E
			Delivery in order to		
			• disclose or manipulate User Data,		
			• manipulate (explore	e, bypass, de	activate or
			change) security serv	ices of the T	OE or
			• manipulate (explore	e, bypass, de	activate or
			change) functions	of the Se	ecurity IC
			Embedded Software	or	
			• enable an at	tack disclo	osing or
			manipulating the Us	er Data or th	ne Security
			IC Embedded Softwa	are.	
T. RND			An attacker may	predict or ob	tain
			information about rando	om numbers g	generated
			by the TOE security ser	vice for insta	nce
			because of a lack of entr	opy of the ra	ndom
			numbers provided.		
			An attacker may	gather inforn	nation
			about the random numb	-	
			TOE security service. B	1	•
			is the main property of random numbers this		
			may be a problem in cas		
			generate cryptographic l	•	
			is expected to take adva	•	
			1	0	

L			-					
	Document No: P	PCC-03-FR-060	Date of Issue: 18/12/2007	7	Date of Rev: 17/03/2011	Rev. No : 05	Page : 19 / 41	
				th al	roperties of the random e TOE. Malfunctions of so considered which n formation about rando	or premature hay assist in g	ageing are	

Table 3 – Threats

4) Special Configuration Requirements:

National Smart Card IC, UKT23T64H v4, consists of an 8052-type microprocessor with a 256 Byte internal memory, a 64K ROM, a 6K Test ROM, a 64K Flash memory, an 8K Static RAM, and a True Random Number Generator. Furthermore, it is equipped with the hardware implementations of the RSA2048, the DES-3DES and the AES ciphering algorithms. The operating system, embedded on 64 K ROM memory, is specifically developed; however, it is not a part of the TOE. The Test ROM stores the IC Dedicated Software used to support testing of the TOE during production. The TOE includes hardware of UKT23T64H v4 smartcard IC, IC Dedicated Software, Flash memory access library, and user libraries of the DES-3DES, AES and RSA algorithms, and related documentation. UKT23T64H v4 communicate with the outer environment through a smartcard reader in accordance with ISO/IEC 7816-3 protocol. Smartcard IC is designed to be resistant against power and fault attacks. In addition, it is equipped with security sensors which sense physical attacks and environmental operating conditions. The detailed knowledge about the special configuration requirement can be found in the product guidance documents.

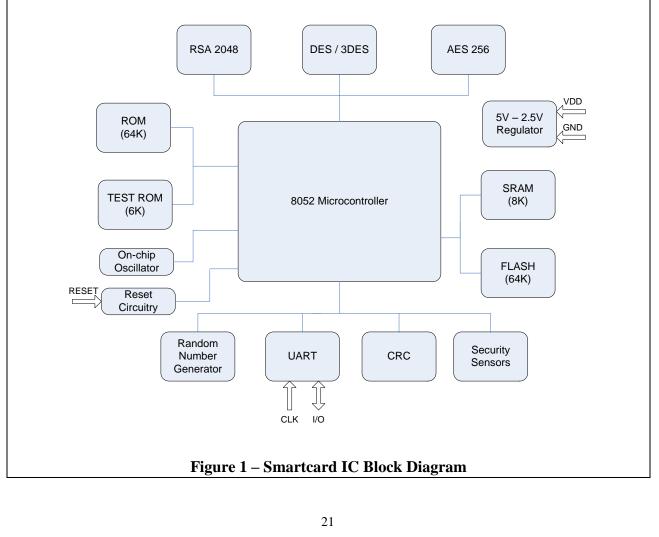
5) Disclaimers:

This certification report and the IT product defined in the associated Common Criteria document has been evaluated at an accredited and licensed evaluation facility conformance to Common Criteria for IT Security Evaluation, version 3.1, revision 3, using Common Methodology for IT Products Evaluation, version 3.1, revision 3. This certification report and the associated Common Criteria document apply only to the identified version and release of the product in its evaluated configuration. Evaluation has been conducted in accordance with the provisions of the CCCS, and the conclusions of the evaluation facility in the evaluation report are consistent with the evidence adduced. This report and its associated Common Criteria document are not an

Document No: PCC-03-FR-060 Date of Issue: 18/12/2007 Date of Rev: 17/03/2011 Rev. No : 05 Page : 20 / 41

endorsement of the product by the Turkish Standardization Institution, or any other organization that recognizes or gives effect to this report and its associated Common Criteria document, and no warranty is given for the product by the Turkish Standardization Institution, or any other organization that recognizes or gives effect to this report and its associated Common Criteria document.

Document No: PCC-03-FR-060

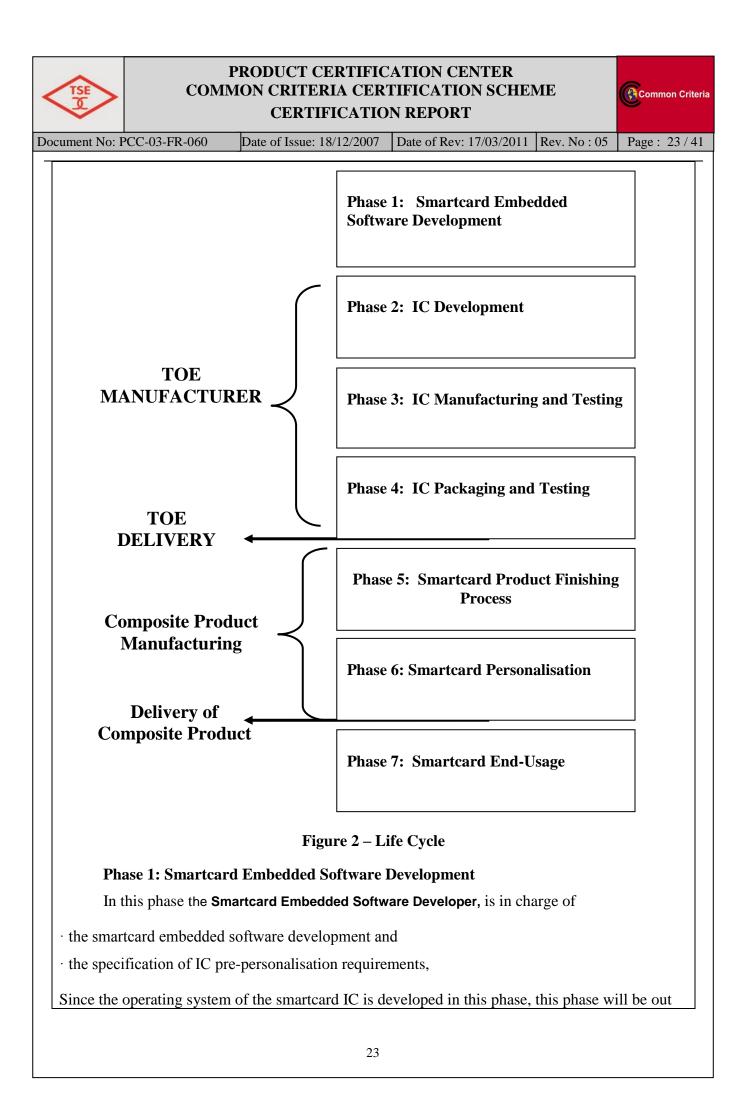

Date of Issue: 18/12/2007 Date of Rev: 17/03/2011 Rev. No : 05

Page : 21 / 41

4. IDENTIFICATION

TOE is a contact-based smart card IC which is designed for security-based applications. TOE also includes IC Dedicated Software and DES v4.2, AES256 v4.2, RSA2048 v4.2 libraries. TOE is designed by Semiconductor Technologies Research Laboratory (YİTAL) division under National Research Institute of Electronics and Cryptology (UEKAE) of TUBİTAK-BİLGEM and fabricated with HHNEC's 0.25um eFlash technology process. It is aimed that this smart card IC is utilised as Turkish national ID Card and national Health Card where secrecy and security is an issue.

National Smart Card IC, UKT23T64H v4, consists of an 8052-type microprocessor with a 256 Byte internal memory, a 64K ROM, a 6K Test ROM, a 64K Flash memory, an 8K Static RAM, and a True Random Number Generator. Furthermore, it is equipped with the hardware implementations of the RSA2048, the DES-3DES and the AES ciphering algorithms as shown in Figure 1.


Document No: PCC-03-FR-060

Date of Issue: 18/12/2007 Date of Rev: 17/03/2011 Rev. No : 05 P

05 Page : 22 / 41

The operating system, embedded on 64 K ROM memory, is specifically developed for the TOE; however, it is not a part of the TOE. The Test ROM stores the IC Dedicated Software used to support testing of the TOE during production. The TOE includes hardware of UKT23T64H v4 smartcard IC, IC Dedicated Software, Flash memory access library, and user libraries of the DES, AES and RSA algorithms, and related documentation. UKT23T64H v4 communicate with the outer environment through a smartcard reader in accordance with ISO/IEC 7816-3 protocol. Smartcard IC is designed to be resistant against power and fault attacks. In addition, it is equipped with security sensors which sense physical attacks and environmental operating conditions.

UKT23T64H v4 smartcard IC is developed by YITAL in order to be used as national ID card, it aims to ensure EAL 5+ assurance level of CC. UKT23T64H v4 which has 7 design and manufacturing life cycle phases as shown in Figure 2 aims to be a national choice for smartcard ICs (which have EAL 5+ assurance level) on the market in terms of functionality, performance and security measures.

Document No: PCC-03-FR-060

Date of Issue: 18/12/2007 Date of Rev: 17/03/2011 Rev. No : 05

Page : 24 / 41

of the scope of the ST.

Phase 2: IC Development

In this phase, the IC Developer

· designs the IC,

· develops IC Dedicated Software,

· provides information, software or tools to the Smartcard Embedded Software Developer, and

 \cdot receives the smartcard embedded software from the developer, through trusted delivery and verification procedures.

The information, software and tools given to the Smartcard Embedded Software Developer are flash memory access driver, crypto hardware driver and RNG test software and related documents about the UKT23T64H v4 IC

Using the IC design, IC Dedicated Software and Security IC Embedded Software, **the IC Designer** constructs the Security IC database, necessary for the IC photomask fabrication.

Phase 3: Manufacturing and Testing

In this phase, the IC Manufacturer is responsible for

 \cdot producing the IC through three main steps: IC manufacturing, IC testing, and IC pre-personalisation.

The IC Mask Manufacturer

 \cdot generates the masks for the IC manufacturing based upon an output from the smartcard IC database.

Since the Security IC Embedded Software is stored in the ROM, the development of the OS software is finished in Phase 1 and delivered to the **IC Manufacturer**. The security IC is manufactured with HHNEC's 0.25µm e-Flash process technology. When the manufacturing process is completed, wafer level tests are performed and the serial number which is specific for each individual chip is written on to the Flash memory of the chips passing the tests. This operation is performed through the IC Dedicated Software residing in the Test ROM. At the end of initilisation/pre-personalisation step, the security IC enters to user mode disabling the use of IC Dedicated Software forever.

Document No: PCC-03-FR-060

Phase 4: IC Packaging and Testing

In this phase, the **IC Packaging Manufacturer** is responsible for the IC packaging and testing.

At the end of the manufacturing stage, IC Manufacturer sends wafers to **IC Packaging Manufacturer** for packaging. There, wafers are diced and separated into individual chips. These individual chips are placed into smartcard modules and wire bonding operation is performed. **TOE is delivered in form of smartcard modules at the end of Phase 4.**

Phase 5: Smartcard Product Finishing Process

In this phase, the Smartcard Product Developer is responsible for the smartcard product finishing process and testing.

Phase 6: Smartcard Personalisation

In this phase, **the Personaliser** is responsible for the smartcard personalisation and final tests.

Phase 7: Smartcard End-usage

In this phase, **the Smartcard Issuer** is responsible for the smartcard product delivery to the smartcard end-user, and the end of life process.

The Security IC Embedded Software is developed outside the TOE development in Phase 1. The TOE is developed in Phase 2 and produced in Phase 3. Then the TOE is packaged in Phase 4 and delivered in form of packaged products.

Document No: PCC-03-FR-060

Date of Issue: 18/12/2007 Date of Rev: 17/03/2011 Rev. No : 05

Page : 26 / 41

5. SECURITY POLICY

Organizational Security Policies

The TOE shall comply with the following Organizational Security Policies (OSP) as security rules, procedures, practices, or guidelines imposed by an organization upon its operations

(see sec3.3 of ST)

POLICY	DESCRIPTION		
P.Process-TOE: Protection during TOE	The TOE Manufacturer must ensure that		
Development and Production	the development and production of the		
	Smartcard Integrated Circuit (Phase 2 - 4) i		
	secure so that no information is unintentionally		
	made available for the operational phase of the		
	TOE. For example, the confidentiality and		
	integrity of design information and test dat		
	shall be guaranteed; access to samples		
	development tools and other material shall b		
	restricted to authorised persons only; scrap will		
	be destroyed etc. This not only pertains to th		
	TOE but also to all information and materia		
	exchanged with the developer of the Smartcar		
	Embedded Software and therefore especially t		
	the Smartcard Embedded Software itself. This		
	includes the delivery (exchange) procedures for		
	Phase 1 and the Phases after TOE Delivery a		
	far as they can be controlled by the TO		
	Manufacturer.		
	An accurate identification must b		
	established for the TOE. This requires that eac		
	instantiation of the TOE carries this uniqu		
	identification. The accurate identification i		
	introduced at the end of the production test i		

Document No: PCC-03-FR-060 Date of Issue: 18/12/200	D7 Date of Rev: 17/03/2011 Rev. No : 05 Page : 27 / 41				
Document No: PCC-03-FR-060 Date of Issue: 18/12/200 P.Add-Functions: Additional Specific Security Functionality	phase 3. Therefore the production environment must support this unique identification. The TOE shall provide the following specific security functionality to the Smartcard Embedded Software: • Data Encryption Standard (DES)				
	 Triple Data Encryption Standard (DES3) Advanced Encryption Standard (AES) Rivest-Shamir-Adleman (RSA2048) 				
P.Key-Installation: Installation of Secret Keys	Keys used in specific functions stated in the policy " <i>P. Add-Functions</i> " are not produced and/or destroyed by the TOE, they are rather installed from outside.				
Table 4 - OSPs					

6. ARCHITECTURAL INFORMATION

The physical scope of the TOE can best be depicted by the Figure 1 from the chap 1.4 of the ST and ST lite.

TOE has:

- 8052 type microprocessor with 256 Byte internal RAM,
- 64KB ROM storing IC Embedded Software,,
- 6KB Test ROM storing IC Dedicated Software
- 8KB SRAM for volatile data storage,
- 64KB Flash memory for non-volatile data storage,
- RSA2048 crypto algorithm block,

Document No: PCC-03-FR-060

Date of Issue: 18/12/2007 Date of Rev: 17/03/2011 Rev. No : 05

5 Page : 28 / 41

- DES-3DES crypto algorithm block,
- AES crypto algorithm block,
- card reader interface(UART),
- sensors which sense/prevent physical attacks,
- random number generator module,
- cyclic redundancy check module,
- regulator which converts external supply of 5V to an internal supply of 2.5V
- on chip oscillator which produces internal clock signal,
- reset circuitry which controls the internal reset signal production according to RESET input and security sensor outputs

Internally, the TOE can be structured according to the following subsystems from the TOE Design documentation.

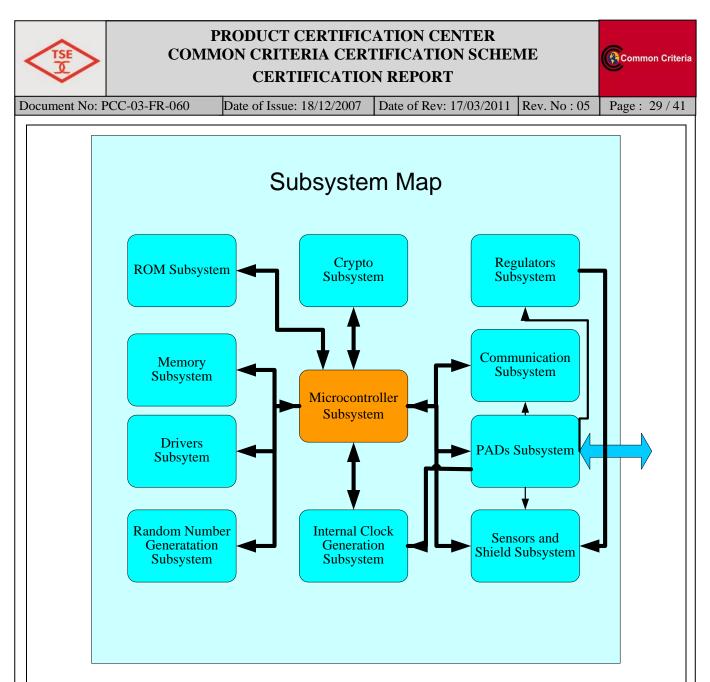


Figure 3 – The Subsystem Map of TOE

1.Microprocessor Subsystem : The microprocessor decodes and executes the operating system instructions that it reads from the ROM subsystem. During the execution of the instructions, it controls and use all other subsystems. For example, the microprocessor initiates the crypto subsystem to perform encryption/decryption operation after writing keys and data into it, and when the operation of the crypto subsystem is finished, the microcontroller reads the results and send them to other subsystems. All data exchange between different subsystems are realised through the microcontroller subsystem. The microcontroller subsystem is a TSF subsystem and its design includes countermeasures against side channel attacks and fault attacks.

Document No: PCC-03-FR-060

Date of Issue: 18/12/2007 Date of Rev: 17/03/2011 Rev. No : 05

Page : 30 / 41

2.Crypto Subsystem : Crypto subsystem is responsible from all of the cryptographic operations of the TOE. It supports DES, 3DES, AES, RSA1024 and RSA 2048 algorithms. The hardware implementation of these algorithms includes countermeasures against faults and side channel attacks. It is a TSF subsystem.

3. Sensors and Shield Subsystem : The TOE has security precautions against external attacks. These precautions are gathered under the sensors and shield subsystem. The TOE is equipped with different type of sensors and an active shield. These sensors are external supply sensor, internal supply sensor, frequency sensor and temperature sensor. The sensors monitor the operating condition of the TOE. Unless the TOE works under the specified conditions, the system resets the circuit and thus, stops the operation of the IC. The metal lines with active signals covering the chip surface forms the active shield which resets the IC when detects any physical attack to the TOE.

4. Random Number Generation Subsystem : This subsystem generates true random numbers to be used by the operating system software and by the security enforcing functions.

5.ROM Subsystem : ROM subsystem consists of 64KB ROM module storing Embedded Software and 6KB Test ROM module storing IC Dedicated Software. At the end of the production before TOE delivery the TOE is in Test Mode and the Test ROM is active. The die tests and prepersonalisation operations are performed using the IC Dedicated Software residing in the Test ROM. TOE is delivered in User Mode where 64KB ROM storing operating system code is active. ROM subsystem delivers to the microcontroller subsystem the code instructions of the operating system software or the self test software depending on the operation mode of the TOE.

6.Memory Subsystem : Memory subsystem consists of the 8KB SRAM module and 64KB flash memory module. SRAM modules stores temporary data that the microcontroller subsystem needs during code execution. In the Flash memory module, the non-volatile data that must not be lost during the power-off is stored.

Document No: PCC-03-FR-060

Date of Issue: 18/12/2007 Date of Rev: 17/03/2011 Rev. No : 05 Page : 31 / 41

7. Internal Clock Generation Subsystem : This subsystem is responsible from generation of the internal clock signals of the circuit. The PLL module which is a part of this subsystem is used to generate the desired clock frequency. It is a non TSF subsystem.

8.Drivers Subsystem : Drivers subsystem consists of software codes needed for the use of Crypto Subsystem (DES, 3DES, AES, RSA1024, RSA2048), for performing self test of the Sensors and Shield subsystem, for performing the randomness test of the random numbers produced by the Random Number Generation subsystem and for accessing the flash memory module of the Memory subsystem.

9.Communication Subsystem : Communication subsystem is responsible from communication of the TOE with the outside world and is a non TSF subsystem. It consists of only UART (Universal Asynchronous Receiver Transmitter Interface) that provides communication of the microprocessor with the smartcard reader.

10.Pads Subsystem : Pads subsystem is responsible from making all connection of the TOE with the outside world (Data, Clock, Reset, Supply and Ground) and is a non TSF subsystem.

11.Regulator Subsystem : Regulator subsystem is responsible from generating internal power voltages of the circuit using the external power supply. and it is a non TSF subsystem.

7. ASSUMPTIONS AND CLARIFICATION OF SCOPE

TOE consists of the components which are defined in section 6 (Architectural information). Except these, Other components are not in the scope of Common Criteria Evaluation.

7.1 Usage Assumptions

A. Process-Sec-IC : Protection during Finishing and Personalisation (Phases 5 – 6)

Security procedures are used after delivery of the TOE by the TOE Manufacturer up to delivery to the end consumer to maintain confidentiality and integrity of the TOE and of its manufacturing and test data (to prevent any possible copy, modification, retention, theft or

Document No: PCC-03-FR-060

Date of Issue: 18/12/2007 Date of Rev: 17/03/2011 Rev. No : 05

Page : 32 / 41

unauthorised use). This means that the Phases after TOE Delivery are assumed to be protected appropriately.

7.2 Environmental Assumptions

A.Plat-Appl: Usage of Hardware Platform

The Security IC Embedded Software is designed so that the requirements from the following documents are met:

• UKT23T64H v4 Security Requirements for Operating System

• Findings of the TOE evaluation reports relevant for the Security IC Embedded Software as referenced in the certification report.

Since particular requirements for the Security IC Embedded Software are not clear before considering a specific attack scenario during vulnerability analysis of the Security IC (AVA_VAN), a summary of such results is provided in the document "ETR for composite evaluation" (ETR-COMP). This document can be provided for the evaluation of the composite product. The ETR-COMP may also include guidance for additional tests being required for the combination of hardware and software. The TOE evaluation must be completed before evaluation of the Security IC Embedded Software can be completed. The TOE evaluation can be conducted before and independent from the evaluation of the Security IC Embedded Software.

A.Resp-Appl : Treatment of User Data

All User Data are owned by Security IC Embedded Software. Therefore, it must be assumed that security relevant User Data (especially cryptographic keys) are treated by the Security IC Embedded Software as defined for its specific application context.

The application context specifies how the User Data shall be handled and protected. The Security IC can not prevent any compromise or modification of User Data by malicious Security IC Embedded Software. The assumption A.Resp-Appl ensures that the Security IC Embedded Software follows the security rules of the application context. When defining the Protection Profile or Security Target for the evaluation of the Security IC Embedded Software appropriate threats

Document No: PCC-03-FR-060

must be defined which depend on the application context. These security needs are condensed in this assumption (A.Resp-Appl) which is very general since the application context is not known and the evaluation of the Security IC Embedded Software is not covered by this Security Target.

A.Key-Function: Usage of key dependent Functions

Key-dependent functions (if any) shall be implemented in the smart card embedded software in a way that they are not susceptible to leakage attacks (as described under T.Leak-Inherent and T.Leak-Forced).

Note that here the routines which may compromise keys when being executed are part of the smart card embedded software. In contrast to this the threads T.Leak-Inherent and T.Leak-Forced address

- The cryptographic routines which are part of the TOE and
- The processing of using data including cryptographic keys.

7.3 Clarification of Scope

Under normal conditions; there are no threats which TOE must counter but did not; however Operational Environment and Organizational Policies have countered. Information about threats that are countered by TOE and Operational Environmental are stated in the Security Target document.

Document No: PCC-03-FR-060

Date of Issue: 18/12/2007 Date of Rev: 17/03/2011 Rev. No : 05

Page : 34 / 41

8. DOCUMENTATION

Name of Document	Version Number	Publication Date	
Security Target Document of	6	07.06.2012	
National Smartcard IC			
(UKTÜM) UKT23T64H v4			
with DES-3DES v4.2,			
AES256 v4.2, RSA2048 v4.2			
libraries and with IC			
Dedicated Software			
UKT23T64H v4 User	2	21.02.2012	
Guidance			

Table 5 - Documents

9. IT PRODUCT TESTING

During the evaluation, all evaluation evidences of TOE were delivered and transferred completely to CCTL by the developers. All the delivered evaluation evidences which include software, documents, etc are mapped to the assurance families of Common Criteria and Common Methodology; so the connections between the assurance families and the evaluation evidences has been established. The evaluation results are available in the Evaluation Technical Report (ETR) of UKT23T64H v4.

It is concluded that the TOE supports EAL 5+ (AVA_VAN.5). There are 25 assurance families which are all evaluated with the methods detailed in the ETR.

IT Product Testing is mainly realized in two parts:

1) Developer Testing:

• **TOE Test Coverage:** Developer has prepared TOE System Test Document according to the TOE Functional Specification documentation.

• **TOE Test Depth:** Developer has prepared TOE System Test Document according to the TOE Design documentation which includes TSF subsystems and its interactions.

• **TOE Functional Testing:** Developer has made functional tests according to the test documentation. Test plans, test scenarios, expected test results and actual test results are in the test documentation.

2) Evaluator Testing:

- **Independent Testing:** Evaluator has done a total of 38 sample independent tests. 14 of them are selected from developer's test plans. The other 24 tests are evaluator's independent tests. All of them are related to TOE security functions.
- **Penetration Testing:** Evaluator has done 21 penetration tests to find out if TOE's vulnerabilities can be used for malicious purposes. The potential vulnerabilities and

Document No: PCC-03-FR-060

Date of Issue: 18/12/2007 Date of Rev: 17/03/2011 Rev. No : 05 Page : 35 / 41

the penetration tests are in "TOE Security Functions Penetration Tests Scope" which is in Annex-C of the ETR and the penetration tests and their results are available in detail in the ETR document as well.

The result of AVA_VAN.5 evaluation is given below:

It is determined that TOE, in its operational environment, is resistant to an attacker possessing "HIGH" attack potential.

10.EVALUATED CONFIGURATION

During the evaluation; the configuration of evaluation evidences which are composed of Software source code, Common Criteria documents, sustenance document and guides are shown below:

Evaluation Evidence: TOE-UKT23T64H v4 Version Number: 4 Production Date: 10.02.2011

Evaluation Evidence: NATIONAL SMARTCARD IC (UKTÜM) UKT23T64H v4 WITH DES - 3DES v4.2, AES256 v4.2, RSA2048 v4.2 LIBRARIES AND WITH IC DEDICATED SOFTWARE Security Target Document

Version Number: 6 Date: 07.06.2012

Evaluation Evidence: NATIONAL SMARTCARD IC (UKTÜM) UKT23T64H v4 WITH DES - 3DES v4.2, AES256 v4.2, RSA2048 v4.2 LIBRARIES AND WITH IC DEDICATED SOFTWARE Security Target Lite Document

Version Number: 7 Date: 30.06.2012

Evaluation Evidence: UKT23T64H v4 Source Code Version Number: 4 Date: 10.02.2011

Evaluation Evidence: UKT23T64H v4 Detailed Design Document(Ayrıntılı Tasarım Dokümanı) Version Number: 18

Date: 21.02.2012

Document No: PCC-03-FR-060

Date of Issue: 18/12/2007 Date of Rev: 17/03/2011 Rev. No : 05

Page: 36 / 41

Evaluation Evidence: UKT23T64H v4 Security Architecture Design Document(Güvenli Mimari Tasarım Dokümanı) Version Number:02 Date: 21.02.2012

Evaluation Evidence: UKT23T64H v4 Functional Specification Document(Fonksiyonel Belirtim Dokümanı)

Version Number: 4 Date: 21.02.2012

Evaluation Evidence: UKT23T64H v4 Modular Construction Document(Modüler Yapı Dokümanı)

Version Number: 2 Date: 21.02.2012

Evaluation Evidence: UKT23T64H v4 User Manual Document(Kullanıcı Kılavuzu Dokümanı)

Version Number: 2 Date: 21.02.2012

Evaluation Evidence: UKT23T64H v4 Security Proposals Document(Güvenlik Önerileri Dokümanı)

Version Number: 03 Date: 29.02.2012

Evaluation Evidence: UKT23T64H v4 Installation Document(Kurulum Dokümanı) Version Number: 2 Date: 21.02.2012

Evaluation Evidence: UKT23T64H v4 Delivery Document(Teslim Dokümanı) Version Number: 2 Date: 21.02.2012

Evaluation Evidence: UKT23T64H v4 Application Standard Document(Uygulama Standardı Dokümanı)

Version Number: 1 Date: 24.02.2011

Evaluation Evidence: UKT23T64H v4 Design Development Tools Document(Tasarım Geliştirme Araçları Dokümanı) Version Number: 2

Date: 17.02.2012

Evaluation Evidence: UKT23T64H v4 Life Cycle Document(Yaşam Döngüsü Dokümanı) Version Number: 2

Document No:	PCC-03-FR-060	Date of Issue: 18/12/2007	Date of Rev: 17/03/2011	Rev. No : 05	Page : 37 / 41	
Dat	te: 13.02.2012					
Evaluation Evidence: UKT23T64H v4 Development Environment Document(Geliştirme Ortam Güvenliği Dokümanı) Version Number: 1 Date: 14.07.2009						
Document Ver	Evaluation Evidence: UKT23T64H v4 Configuration Management Plan Document(Konfigürasyon Yönetim Planı Dokümanı) Version Number: 4 Production Date: 09.11.2010					
Vei	Evaluation Evidence: UKT23T64H v4 Test Document(Test Dokümanı) Version Number: 4 Date: 12.03.2012					
Evaluation Evidence: UKT23T64H v4 Test Scope and Depth Document(Test Kapsam ve Derinlik Dokümanı) Version Number: 4 Date: 12.03.2012						
Evaluation Evidence: UKT23T64H v4 Configuration Evidences(Konfigürasyon Kanıtları) Date: 09.10.2010						

Document No: PCC-03-FR-060

Date of Issue: 18/12/2007 Date of Rev: 17/03/2011 Rev. No : 05

Page: 38 / 41

11.RESULTS OF THE EVALUATION

Table 6 below provides a complete listing of the Security Assurance Requirements for the TOE. These requirements consists of the Evaluation Assurance Level 5 (EAL 5) components as specified in Part 3 of the Common Criteria augmented with AVA_VAN 5

Component ID	Component Title
ASE_INT.1	ST Introduction
ASE_CCL.1	Conformance Claims
ASE_SPD.1	Security Problem Definition
ASE_OBJ.2	Security Objectives
ASE_ECD.1	Extended Components Definition
ASE_REQ.2	Derived Security Requirements
ASE_TSS.1	TOE Summary Specification
ADV_ARC.1	Security Architecture
ADV_FSP.5	Functional Specification
ADV_IMP.1	Implementation Representation
ADV_INT.2	TSF Internals
ADV_TDS.4	TOE Design
AGD_OPE.1	Operational User Guidance
AGD_PRE.1	Preparative Procedures
ALC_CMC.4	Configuration Management Capabilities
ALC_CMS.5	Configuration Management Capabilities
ALC_DEL.1	Delivery
ALC_DVS.1	Development Security
ALC_LCD.1	Life-cycle Definition
ALC_TAT.2	Tools and Techniques
ATE_COV.2	Coverage
ATE_DPT.3	Depth
ATE_FUN.1	Functional Tests
ATE_IND.2	Independent Testing
AVA_VAN.5	Vulnerability Analysis

Table 6 – Security Assurance Requirements for the TOE

The Evaluation Team assigned a Pass, Fail, or Inconclusive verdict to each work unit of each EAL 5 assurance component. For Fail or Inconclusive work unit verdicts, the Evaluation Team advised the developer about the issues requiring resolution or clarification within the evaluation evidence. In this way, the Evaluation Team assigned an overall Pass verdict to the assurance component only when all of the work units for that component had been assigned a Pass verdict. So for TOE "NATIONAL SMARTCARD IC (UKTÜM) UKT23T64H v4 WITH DES – 3DES v4.2, AES256 v4.2, RSA2048 v4.2 LIBRARIES AND WITH IC DEDICATED SOFTWARE" the results of the assessment of all evaluation tasks are "Pass".

Results of the evaluation:

UKT23T64H v4 product was found to fulfill the Common Criteria requirements for each of 25 assurance families and provide the assurance level **EAL 5+ (AVA_VAN.5)**. This result shows

Document No: PCC-03-FR-060

Date of Issue: 18/12/2007 Date of Rev: 17/03/2011 Rev. No : 05 Page : 39 / 41

that TOE is resistant against the "HIGH "level attack potential and it countervails the claims of the

functional and assurance requirements which are defined in ST document.

12.EVALUATOR COMMENTS/ RECOMMENDATIONS

No recommendations or comments have been communicated to CCCS by the evaluators related to the evaluation process of "NATIONAL SMARTCARD IC (UKTÜM) UKT23T64H v4 WITH DES - 3DES v4.2, AES256 v4.2, RSA2048 v4.2 LIBRARIES AND WITH IC DEDICATED SOFTWARE" product, result of the evaluation, or the ETR.

13.CERTIFICATION AUTHORITY COMMENTS/ RECOMMENDATIONS

The certifier has no comments or recommendations related to the evaluation process of "NATIONAL SMARTCARD IC (UKTÜM) UKT23T64H v4 WITH DES – 3DES v4.2, AES256 v4.2, RSA2048 v4.2 LIBRARIES AND WITH IC DEDICATED SOFTWARE" product, result of the evaluation, or the ETR.

14.SECURITY TARGET

Information about the Security Target document associated with this certification report is as follows:

Name of Document: Security Target Document of "National Smartcard IC (UKTÜM) UKT23T64H v4 with DES-3DES v4.2, AES 256 v4.2, RSA2048 v4.2 libraries and with IC Dedicated Software"

Version No.: 6 **Date of Document:** 07.06.2012

This Security Target describes the TOE, intended IT environment, security objectives, security requirements (for the TOE and IT environment), TOE security functions and all necessary rationale.

Name of Document: Security Target Lite Document of "National Smartcard IC (UKTÜM) UKT23T64H v4 with DES-3DES v4.2, AES 256 v4.2, RSA2048 v4.2 libraries and with IC Dedicated Software"

Version No.: 7 Date of Document: 30.06.2012

Document No: PCC-03-FR-060

Date of Issue: 18/12/2007 Date of Rev: 17/03/2011 Rev. No : 05

Page : 40 / 41

15.BIBLIOGRAPHY

1)Common Criteria for Information Technology Security Evaluation, Version 3.1 Revision 3, July 2009

2)Common Methodology for Information Technology Security Evaluation, CEM, Version 3.1 Revision 3, July 2009

3) "National Smartcard IC (UKTÜM) UKT23T64H v4 with DES-3DES v4.2, AES 256 v4.2,

RSA2048 v4.2 libraries and with IC Dedicated Software" Security Target Version: 06 Date: 07.06.2012

4)Evaluation Technical Report(Document Code: DTR 10 TR 01),v1.0,April 06,2012

5)Evaluation Technical Report(Document Code: DTR 10 TR 01),v1.1,June 07,2012

6) PCC-03-WI-04 CERTIFICATION REPORT PREPARATION INSTRUCTIONS, Version 2.0

7)CC Supporting Document Guidance, Mandatory Technical Document, Application of Attack Potential to Smartcards, Version 2.7 Revision 1, March 2009, CCDB-2009-03-001

8)CC Supporting Document Guidance, Mandatory Technical Document, Application of CC to Integrated Circuits, Version 3.0 Revision 1, March 2009, CCDB-2009-03-002

9)Joint Interpretation Library, Attack Methods for Smartcards and Similar Devices, confidential Version 1.5, February 2009, BSI

10)Common Criteria Protection Profile as a guidance, Security IC Platform Protection Profile, Version 1.0, 15.06.2007 Registered and Certified by Bundesamt für Sicherheit in der Informationstechnik (BSI) under the reference BSI-PP-0035.

11) "National Smartcard IC (UKTÜM) UKT23T64H v4 with DES-3DES v4.2, AES 256 v4.2, RSA2048 v4.2 libraries and with IC Dedicated Software" Security Target Lite Version: 07 Date: 30.06.2012

16.APPENDICES

There is no additional information which is inappropriate for reference in other sections.

Document No: PCC-03-FR-060

Date of Issue: 18/12/2007 Date of Rev: 17/03/2011 Rev. No : 05

5 Page : 41 / 41

PREPARED BY

CC INSPECTION EXPERT(CANDIDATE)	
Name, Last Name:	Mehmet Kürşad ÜNAL
Title:	
Signature:	
CC INSPECTION EXPERT/TECHNICAL	
RESPONSIBLE	
Name, Last Name:	Mariye Umay AKKAYA
Title:	
Signature:	
APPROVED BY	
Name, Last Name:	Fatih ÇETİN
Title:	
Signature:	