
## **Certes Networks, Inc.**

CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware



Prepared for:



**Certes Networks**, Inc. 300 Corporate Center Drive Moon, PA 15108 United States of America

Phone: +1 412 262 2571 www.certesnetworks.com Prepared by:



**Corsec Security, Inc.** 13921 Park Center Road Suite 460 Herndon, VA 20171 United States of America

Phone: +1 703 267 6050 www.corsec.com

## **Table of Contents**

| 1. Intro | duction                                                                     | 5    |
|----------|-----------------------------------------------------------------------------|------|
| 1.1      | Purpose                                                                     | 5    |
| 1.2      | Security Target and TOE References                                          | 5    |
| 1.3      | Product Overview                                                            | 6    |
| 1.4      | TOE Overview                                                                | 8    |
| 1.4.1    | Brief Description of the Components of the TOE                              | 9    |
| 1.4.2    | TOE Environment                                                             | . 10 |
| 1.5      | TOE Description                                                             | . 10 |
| 1.5.1    | Physical Scope                                                              | . 11 |
| 1.5.2    | Logical Scope                                                               | . 12 |
| 1.5.3    | Product Physical/Logical Features and Functionality not included in the TOE | . 14 |
| 2. Conf  | ormance Claims                                                              | 15   |
| 3. Secu  | rity Problem                                                                | 16   |
| 3.1      | Threats to Security                                                         | 16   |
| 3.2      | Organizational Security Policies                                            | 16   |
| 3.3      | Assumptions                                                                 | . 17 |
| 4. Secu  | rity Objectives                                                             | 18   |
| 4.1      | Security Objectives for the TOE                                             | 18   |
| 4.2      | Security Objectives for the Operational Environment                         | 18   |
| 4.2.1    | IT Security Objectives                                                      | 18   |
| 4.2.2    | Non-IT Security Objectives                                                  | 19   |
| 5. Exte  | nded Components                                                             | 20   |
| 5.1      | Extended TOE Security Functional Components                                 | 20   |
| 5.2      | Extended TOE Security Assurance Components                                  | 20   |
| 6. Secu  | rity Requirements                                                           | 21   |
| 6.1      | Conventions                                                                 | 21   |
| 6.2      | Security Functional Requirements                                            | 21   |
| 6.2.1    |                                                                             |      |
| 6.2.2    | Class FCS: Cryptographic Support                                            | 24   |
| 6.2.3    | Class FDP: User Data Protection                                             | 26   |
| 6.2.4    | Class FIA: Identification and Authentication                                | 28   |
| 6.2.5    | Class FMT: Security Management                                              | 29   |
| 6.2.6    |                                                                             | -    |
| 6.2.7    | Class FTA: TOE Access                                                       | 31   |
| 6.2.8    | Class FTP: Trusted Path/Channels                                            | 32   |
| 6.3      | Security Assurance Requirements                                             | 32   |
| 7. TOE   | Security Specification                                                      | 34   |
| 7.1      | TOE Security Functionality                                                  |      |
| 7.1.1    |                                                                             |      |
| 7.1.2    |                                                                             |      |
| 7.1.3    |                                                                             |      |
| 7.1.4    |                                                                             |      |
| 7.1.5    | Security Management                                                         | 37   |

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

©2019 Certes Networks, Inc.

|    | 7.1.6 | Protection of the TSF                                                | 38 |
|----|-------|----------------------------------------------------------------------|----|
|    | 7.1.7 | TOE Access                                                           |    |
|    | 7.1.8 | Trusted Path/Channels                                                | 38 |
| 8. | Ratio | nale                                                                 | 39 |
| 8  | .1    | Conformance Claims Rationale                                         | 39 |
| 8  | .2    | Security Objectives Rationale                                        | 39 |
|    | 8.2.1 | Security Objectives Rationale Relating to Threats                    | 39 |
|    | 8.2.2 | Security Objectives Rationale Relating to Policies                   | 41 |
|    | 8.2.3 | Security Objectives Rationale Relating to Assumptions                | 41 |
| 8  | .3    | Rationale for Extended Security Functional Requirements              | 42 |
| 8  | .4    | Rationale for Extended TOE Security Assurance Requirements           | 42 |
| 8  | .5    | Security Requirements Rationale                                      | 42 |
|    | 8.5.1 | Rationale for Security Functional Requirements of the TOE Objectives | 42 |
|    | 8.5.2 | Security Assurance Requirements Rationale                            | 46 |
|    | 8.5.3 | Dependency Rationale                                                 | 46 |
| 9. | Acro  | nyms                                                                 | 49 |
|    |       |                                                                      |    |

## **List of Figures**

| Figure 1 – Deployment Configuration of the TOE | 9  |
|------------------------------------------------|----|
| Figure 2 – Physical TOE Boundary               | 11 |

## **List of Tables**

| Table 1 – ST and TOE References                                                      | 5  |
|--------------------------------------------------------------------------------------|----|
| Table 2 – CEP Network Topologies                                                     | 7  |
| Table 3 – CryptoFlow Net Creator Server Requirements                                 | 12 |
| Table 4 – CC and PP Conformance                                                      | 15 |
| Table 5 – Threats                                                                    |    |
| Table 6 – Assumptions                                                                | 17 |
| Table 7 – Security Objectives for the TOE                                            | 18 |
| Table 8 – IT Security Objectives                                                     | 19 |
| Table 9 – Non-IT Security Objectives                                                 | 19 |
| Table 10 – TOE Security Functional Requirements                                      | 21 |
| Table 11 – Auditable Events                                                          | 23 |
| Table 12 – Cryptographic Key Generation Standards for CryptoFlow Net Creator         | 24 |
| Table 14 – Cryptographic Operations of the CryptoFlow Net Creator                    | 25 |
| Table 16 – Password Conventions                                                      | 28 |
| Table 17 – Management of TSF Data for CryptoFlow Net Creator                         | 30 |
| Table 18 – Management of TSF Data for CEP CLI                                        | 30 |
| Table 19 – User Roles                                                                | 31 |
| Table 20 – Assurance Requirements                                                    | 32 |
| Table 21 – Mapping of TOE Security Functionality to Security Functional Requirements | 34 |

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

| Table 22 – Threats: Objectives Mapping          | 39 |
|-------------------------------------------------|----|
| Table 23 – Assumptions: Objectives Mapping      |    |
| Table 24 – Objectives: SFRs Mapping             |    |
| Table 25 – Functional Requirements Dependencies |    |
| Table 26 – Acronyms                             |    |

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

## 1. Introduction

This section identifies the Security Target (ST), Target of Evaluation (TOE), and the ST organization. The TOE is the Certes Networks, Inc. CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware and will hereafter be referred to as the TOE throughout this document. The TOE is a high performance, low latency, multi-layer encryption appliance known as a CEP and web-based management software called the CryptoFlow Net Creator. The CEP provides Ethernet frame encryption for Layer 2 networks, Internet Protocol (IP) packet encryption using IP Security (IPSec) for Layer 3 networks, and data payload encryption for Layer 4 MPLS<sup>1</sup> networks. CryptoFlow Net Creator is used to manage the CEP encryption appliances.

## 1.1 Purpose

This ST is divided into nine sections, as follows:

- Introduction (Section 1) Provides a brief summary of the ST contents and describes the organization of other sections within this document. It also provides an overview of the TOE security functionality and describes the physical and logical scope for the TOE as well as the ST and TOE references.
- Conformance Claims (Section 2) Provides the identification of any Common Criteria (CC), Protection Profile (PP), and Evaluation Assurance Level (EAL) package claims. It also identifies whether the ST contains extended security requirements.
- Security Problem (Section 3) Describes the threats, organizational security policies, and assumptions that pertain to the TOE and its environment.
- Security Objectives (Section 4) Identifies the security objectives that are satisfied by the TOE and its environment.
- Extended Components (Section 5) Identifies new components (extended Security Functional Requirements (SFRs) and extended Security Assurance Requirements (SARs)) that are not included in CC Part 2 or CC Part 3.
- Security Requirements (Section 6) Presents the SFRs and SARs to which the TOE adheres.
- TOE Security Specification (Section 7) Describes the security functions provided by the TOE that satisfy the SFRs and objectives.
- Rationale (Section 8) Presents the rationale for the security objectives, requirements, and SFR dependencies as to their consistency, completeness, and suitability.
- Acronyms (Section 9) Defines the acronyms and terminology used within this ST.

## **1.2** Security Target and TOE References

Table 1 below shows the ST and TOE references.

#### Table 1 – ST and TOE References

ST Title

Certes Networks, Inc. CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware Security Target

<sup>1</sup> MPLS – Multiprotocol Label Switching

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

©2019 Certes Networks, Inc.

| ST Version          | Version 0.7                                                                                                                                                                                                                                                                                                                        |  |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ST Author           | Corsec Security, Inc.                                                                                                                                                                                                                                                                                                              |  |  |
| ST Publication Date | T Publication Date January 22, 2019                                                                                                                                                                                                                                                                                                |  |  |
| TOE Reference       | <ul> <li>Certes Networks, Inc. CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware composed TOE consisting of the following components:</li> <li>CryptoFlow Net Creator v5.3.8447</li> <li>CEP220, CEP250, CEP300, CEP420, and CEP520</li> <li>CEP v5.3.0290</li> </ul> |  |  |
| FIPS 140-2 Status   | Level 1 Validated Cryptographic Modules: See tables 12-15 for certificate numbers                                                                                                                                                                                                                                                  |  |  |

## **1.3 Product Overview**

The Product Overview provides a high-level description of the product that is the subject of the evaluation. The following section, TOE Overview, will provide the introduction to the parts of the overall product offering that are specifically being evaluated.

The TOE is a suite of components consisting of CEP encryption appliances and CryptoFlow Net Creator central security and policy management software. CryptoFlow Net Creator is a web-based GUI<sup>2</sup> that configures and monitors the CEP encryption appliances, stores and deploys policies (or rules), and provides key management and auditing capabilities. Policies created and distributed by CryptoFlow Net Creator define the actions CEPs take on protected network traffic, either to encrypt and decrypt it, send it in the clear, or drop it. All remote management traffic transmitted between the CryptoFlow Net Creator and CEP encryption appliances is protected via TLS<sup>3</sup>v1.2 sessions.

The CEP encryption appliance provides high-speed processing capabilities to protect data travelling over untrusted networks while in transit between sites. It provides Ethernet frame encryption for Layer 2 networks, IPSec encryption for Layer 3 networks, and data payload encryption for Layer 4 MPLS networks. The CEP220, 250, 300, 420, and 520 encryption appliances offer full-duplex, line rate encryption up to 20 Mbps<sup>4</sup>, 20 Mbps, 200 Mbps, 1 Gbps<sup>5</sup>, and 10 Gbps speeds, respectively, using the Advanced Encryption Standard (AES) algorithm.

Each CEP encryption appliance has one management port and two data ports. A local data port is used for LAN<sup>6</sup> connections to trusted networks, while a remote data port provides WAN<sup>7</sup> connections over untrusted networks. Unencrypted traffic that originates from a trusted, local network is received on the local data port of the origination CEP. This CEP encrypts the received traffic and sends it out through the remote data port to another CEP via an untrusted network, such as Private WAN. At the receiving CEP, the process is reversed; encrypted traffic is received on the CEP remote data port where it is decrypted and sent out the local data port to the destination. Encryption policies use IP addresses, port numbers, protocol IDs<sup>8</sup>, or VLAN<sup>9</sup> tags to identify and

- <sup>3</sup> TLS Transport Layer Security
- <sup>4</sup> Mbps Megabits per Second
- <sup>5</sup> Gbps Gigabits per Second
- <sup>6</sup> LAN Local-Area network
- <sup>7</sup> WAN Wide Area Network

©2019 Certes Networks, Inc.

<sup>&</sup>lt;sup>2</sup> GUI – Graphical User Interface

<sup>&</sup>lt;sup>8</sup> ID – Identifier

<sup>&</sup>lt;sup>9</sup> VLAN – Virtual Local Area Network

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

apply security processing to network traffic. CEPs secure network traffic using 256-bit AES<sup>10</sup>-GCM<sup>11</sup> and AES-CBC<sup>12</sup> for encryption, as well as SHA<sup>13</sup>-2 for message integrity and authentication.

The CEP encryption appliance provides full data encryption for Layer 3 IP networks using standard IPSec packet format while preserving the original IP header. It also provides Layer 4 encryption using a patented scheme that protects the IP payload while preserving the original IP and TCP<sup>14</sup>/UDP<sup>15</sup> headers. This unique capability maintains network transparency while providing strong data protection. By preserving the original header and encrypting only the payload, the CEP encryption appliance protects user data over any IP network. This includes any multi-carrier, load-balanced, or high-availability network. This feature also allows network services, such as Netflow/Jflow, and Class of Service (CoS) based traffic shaping to be maintained throughout the network.

The CEP encryption appliances are managed via a CLI<sup>16</sup> hosted on the appliance itself or via the CryptoFlow Net Creator GUI Server running on a separate Linux based platform. The CEP CLI, accessed via serial port or remote SSH<sup>17</sup>, is used for initial setup, troubleshooting, and diagnostic tasks.

The CryptoFlow Net Creator GUI is the primary management interface. It is a web-based application and database server supporting role-based access that is used to provision CEP encryption appliances, define polices, and manage keys and certificates. Policies and key data, used by the CEPs to derive encryption keys, are generated and securely distributed to CEP encryption appliances via a TLS authenticated and encrypted channel, with the option for bilateral certificate-based authentication. CryptoFlow Net Creator offers high availability and the web-based, three-tier architecture scales linearly. CryptoFlow Net Creator also provides SNMP<sup>18</sup> access to host information and has the capability to forward logs to an administrator assigned syslog server and generate email notifications when critical alerts are generated in the system.

The CEPs can be deployed into many network topologies.

Table 2 identifies the network topologies that are supported by the TOE's policies.

| Encryption Policy Type | Layer   | Topology                                             |
|------------------------|---------|------------------------------------------------------|
| Policies               | Layer 3 | Hub-and-Spoke<br>Point-to-Point<br>Mesh<br>Multicast |
|                        | Layer 2 | Mesh                                                 |

#### Table 2 – CEP Network Topologies

- <sup>13</sup> SHA Secure Hash Algorithm
- <sup>14</sup> TCP Transmission Control Protocol
- <sup>15</sup> UDP User Datagram Protocol
- <sup>16</sup> CLI Command Line Interface

©2019 Certes Networks, Inc.

<sup>&</sup>lt;sup>10</sup> AES – Advanced Encryption Standard

<sup>&</sup>lt;sup>11</sup> GCM – Galois Counter Mode

<sup>&</sup>lt;sup>12</sup> CBC – Cipher Block Chaining

<sup>&</sup>lt;sup>17</sup> SSH – Secure Shell

<sup>&</sup>lt;sup>18</sup> SNMP – Simple Network Management Protocol

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

### **1.4 TOE Overview**

The TOE Overview summarizes the usage and major security features of the TOE. This section provides a context for the TOE evaluation by identifying the TOE type, describing the TOE, and defining the specific evaluated configuration.

The TOE is the CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware, which is a software and hardware TOE. The TOE is a CEP encryption appliance, configured and managed using the CryptoFlow Net Creator custom-written application software. The TOE provides Layer 2 Ethernet frame encryption, Layer 3 IP packet encryption, Layer 4 encryption, encryption keys required for the encryption, and a GUI and CLI for the management of its functionality. All of the security features of the TOE, including the cryptographic algorithms, are implemented in the CryptoFlow Net Creator v5.3 Software and the CEP v5.3 Firmware. No security features of the TOE are implemented in the TOE hardware. In addition, the security features are the same amongst all the TOE CEP encryption appliance models.

The CryptoFlow Net Creator v5.3 software includes a FIPS-140-2 validated cryptographic module (cryptographic library). Also, the TOE CEP encryption appliances themselves are FIPS-140-2 validated and are running the CEP v5.3 Firmware that provides all of the FIPS 140-2 validated cryptographic algorithms for the CEP encryption appliances.

The CEP encryption appliances are the policy enforcement points. Because of this, CEPs are referred to as Certes Enforcement Points. According to the policies received, CEPs can encrypt and decrypt traffic, send traffic in the clear, or drop traffic. A brief description of the encryption processes at Layer 2 and Layer 3 is given below:

#### Layer 2 Ethernet Frame Encryption:

In Layer 2 policies, the CEP provides encryption services to Ethernet frames by using a VLAN ID as an encryption selector or by encrypting all Ethernet frames received from the trusted network.

#### Layer 3 IP Packet Encryption:

For Layer 3 IP Packet encryption, the CEPs use the IPSec protocol to provide full data encryption for Layer 3 IP networks. They use the Encapsulating Security Payload (ESP) protocol to preserve the original IP packet header and encrypt just the payload. By doing so, the CEPs can encrypt data over load-balanced, redundant, and resilient networks.

#### Layer 4 Packet Encryption:

Layer 4 packet encryption is a variant of Layer 3 IP Packet encryption in which the CEPs preserve not just the original IP packet header, but also the original TCP/UDP header. Only the traffic payload beyond the original TCP/UDP header is encrypted. This mode allows visibility of the packet to any network monitoring tools in the network.

Before secured data can be exchanged, a Security Association (SA) must be established between the CEP encryption appliances exchanging the information. An SA identifies what traffic to act on, what kind of security to apply, and the CEP with which the traffic is being exchanged. SAs are created when policies are deployed to the CEPs and can be refreshed during a rekey. Two SAs are established for each connection: one for inbound communication and one for outbound communication.

©2019 Certes Networks, Inc.

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

When sending a packet or frame, the CEP checks its Security Policy Database (SPD)<sup>19</sup> to determine which SA to use. The SA determines the security processing required for the packet or frame. For receiving packets or frames, the CEP examines each packet or frame it receives and decides what actions need to be exercised. The actions include one of the following:

- Clear: Packets or frames that match a clear text policy are passed unencrypted.
- Discard: Packets or frames that match a discard policy are dropped and do not exit the CEP.
- Encrypt/Decrypt: All packets matching this policy are encrypted or decrypted.

Figure 1 shows the details of the deployment configuration of the TOE. The following previously undefined acronym appears in Figure 1:

• NTP – Network Time Protocol

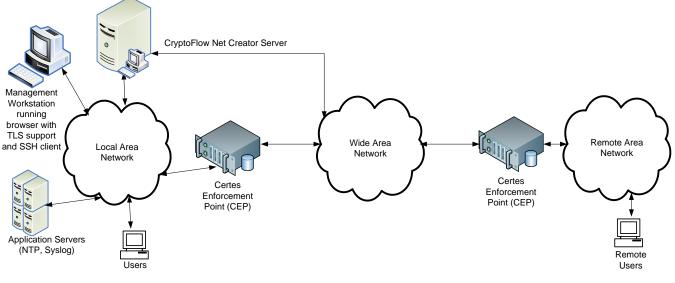



Figure 1 – Deployment Configuration of the TOE

## 1.4.1 Brief Description of the Components of the TOE

The CEPs can be managed by authorized administrators using the CryptoFlow Net Creator GUI or the CEP CLI. Using the CryptoFlow Net Creator GUI, an administrator can configure and manage multiple appliances from a single centralized location. In addition, security policies defining how and where the encryption will take place can be created. The CEP CLI can be accessed from the management workstation either directly via a serial port or through an SSH connection. It allows an administrator to perform initial setup and troubleshooting of the CEP.

A policy defines networks to be protected and groups these networks to form Network Sets. A policy can have one or more Network Sets associated with it. Once the Network Sets are established, CEPs can be assigned to

©2019 Certes Networks, Inc.

<sup>&</sup>lt;sup>19</sup> SPD – An SPD defines the traffic to be protected, how to protect it, and with whom the protection is shared. The SPD uses selectors to map traffic to a policy, which maps to an SA that is maintained in the Security Association Database (SAD).

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

This document may be freely reproduced and distributed whole and intact including this copyright notice.

those Network Sets and the security policies governing them are defined. Each CEP in a given network is given the same group encryption key data to be used to derive encryption keys. Policy types supported are specified in Table 2. CryptoFlow Net Creator centralizes the creation and distribution of key data and policies. In addition, it provides a rekeying capability that ensures that CEPs generate new encryption keys at defined rekey intervals.

Each policy specifies the encryption and hash algorithms to be used, re-key periods, and whether the key generation technique being used is per Network Set or global. It also specifies the lifetime of the policy, the CEPs that enforce the policy, what kind of traffic the policy acts on, and what actions should be taken on the traffic along with which networks are to be protected. Traffic encryption can be based on the source IP address, destination IP address, source port number, destination port number, protocol ID, or VLAN tag ID.

Once a policy is defined, CryptoFlow Net Creator generates and distributes the required key data and appropriate policies to the CEPs. CryptoFlow Net Creator is installed under a Linux OS<sup>20</sup>. Only the CryptoFlow Net Creator software is included within the TOE boundary, while the physical hardware and Linux OS are considered outside of the TOE boundary.

## 1.4.2 TOE Environment

The TOE is intended to be deployed in a physically secure cabinet or data center with the appropriate level of physical access control and physical protection (e.g., fire control, locks, alarms). The TOE is intended to be managed by administrators operating under a consistent security policy.

The TOE is meant to provide confidentiality and integrity services to information traveling across an untrusted network. The TOE environment should ensure stable network connectivity for the TOE to perform its intended function.

The TOE requires reliable timestamps to audit its security-relevant events. The TOE requires the clocks on the different components of the TOE to be synchronized so that the time each event occurred can be accurately audited. The TOE environment is responsible for providing an NTP server for time synchronization.

The TOE management functionality is accessed via an independent third-party SSH client or Web browser. Any standards-compliant SSH client is suitable for use with the TOE. One of the following types of Web browsers should be used:

- Microsoft Internet Explorer (IE v11+)
- Mozilla Firefox (v64+)
- Google Chrome (v71+)
- Apple Safari (v12+)

## **1.5 TOE Description**

This section primarily addresses the physical and logical components of the TOE that are included in the evaluation.

<sup>20</sup> OS – Operating System

©2019 Certes Networks, Inc.

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

## 1.5.1 Physical Scope

Figure 2 illustrates the physical scope and the physical boundary of the overall solution and ties together all of the components of the TOE. The TOE is a software and hardware TOE. The TOE is a CEP encryption appliance (both hardware and software) configured and managed using the CryptoFlow Net Creator custom-written application software.

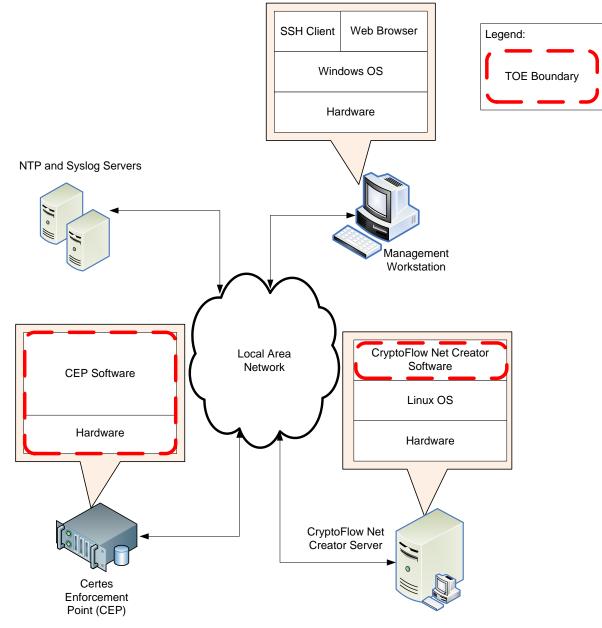



Figure 2 – Physical TOE Boundary

#### **1.5.1.1 TOE** Hardware and Software

The essential physical components for the proper operation of the TOE in the evaluated configuration include the following:

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

- One of each of these Certes encryption appliances:
  - CEP220
  - CEP250
  - CEP300
  - CEP420
  - CEP520
- CryptoFlow Net Creator Server
- CEP v5.3.0290, in binary format pre-installed on the CEP encryption appliances
- CryptoFlow Net Creator v5.3.8447, in binary format pre-installed on the CryptoFlow Net Creator Server

The CryptoFlow Net Creator v5.3.8447 is shipped to customers on a CryptoFlow Net Creator Server that meets the minimum system requirements listed in Table 3.

Table 3 – CryptoFlow Net Creator Server Requirements

| Component         | Requirement                                            |
|-------------------|--------------------------------------------------------|
| OS                | CentOS 6.7 (with the current released updates applied) |
| CPU <sup>21</sup> | Intel Xeon E3-1270 v5, 3.6 GHz <sup>22</sup>           |
| Memory            | 8 GB <sup>23</sup>                                     |
| Disk Space        | 500 GB minimum                                         |

Only the CEP (hardware and software) and CryptoFlow Net Creator (software-only) are included in the TOE boundary. The CEP hardware includes purpose-built appliances that are included with the purchase of the TOE. The software is custom-made to provide cryptographic functionality and the ability to manage the CEP encryption appliances.

#### **1.5.1.2** Guidance Documentation

The following guides are required reading and part of the TOE:

- CEP 5.3 User Guide, Version 5.3, REV A
- Certes 5.3 Enforcers for Certifications Product Guide, Rev A, 4/20/2018
- CFNC User Guide, Version 5.3, REV A
- CryptoFlow Net Creator 5.3 Installation Guide, Version 5.3, REV A

These guides may be downloaded in PDF format from the Certes's Customer Portal at <u>https://support.certesnetworks.com/</u>.

### 1.5.2 Logical Scope

The logical boundary of the TOE will be broken down into the following security classes, which are further described in sections 6 and 7 of this ST. The logical scope also provides the description of the security features of the TOE. The SFRs implemented by the TOE are usefully grouped under the Security Function Classes described in the sections below.

©2019 Certes Networks, Inc.

<sup>&</sup>lt;sup>21</sup> CPU – Central Processing Unit

<sup>&</sup>lt;sup>22</sup> GHz - Gigahertz

<sup>&</sup>lt;sup>23</sup> GB - Gigabyte

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

#### **1.5.2.1** Security Audit

The TOE provides functionality for the generation and viewing of audit records. As administrators manage and configure the TOE, the TOE tracks their activities by recording audit records in audit logs. The TOE records all security-relevant configuration settings and changes to ensure accountability of the administrator's actions. Authorized administrators can view the audit records through the CryptoFlow Net Creator GUI and the CEP CLI. The audit records show the identity of the user that triggered the event. The TOE applies a set of rules in monitoring the audited events, and based upon these rules, indicates a potential violation of the enforcement of the SFRs by displaying an alert at the CryptoFlow Net Creator GUI.

#### **1.5.2.2** Cryptographic Support

The TOE uses two FIPS 140-2 validated cryptographic modules to perform cryptographic operations. The cryptographic operations are used to secure communications from remote administrators at the CryptoFlow Net Creator GUI and CEP CLI. They are also used to encrypt user data, create a secure communication channel for the transfer of user data between CEPs, and protect TSF data (e.g., key data, policies) transmitted between CryptoFlow Net Creator and the CEPs. All cryptographic keys generated by the TOE are destroyed by overwriting them according to FIPS 140-2 zeroization methods.

#### 1.5.2.3 User Data Protection

The TOE enforces the Information Flow Control SFP<sup>24</sup> that applies a set of rules to Ethernet frames or IP traffic passing through the TOE. Depending on the operation identified in the SFP, the TOE will determine whether to pass user traffic in the clear, discard it, or encrypt/decrypt it. Authorized TOE administrators configure the SFP by setting security attributes using the CryptoFlow Net Creator GUI or the CEP CLI.

#### **1.5.2.4** Identification and Authentication

All TOE administrators must be identified and authenticated prior to performing any actions at the CryptoFlow Net Creator GUI or CEP CLI. Access to the TOE requires an authorized username and role. This ensures that only legitimate administrators of the TOE can gain access to the configuration and management settings. The TOE obscures passwords at the CryptoFlow Net Creator GUI and CEP CLI during authentication. The CryptoFlow Net Creator GUI uses a bullet (•) in place of each character, and the CEP CLI gives no feedback.

#### 1.5.2.5 Security Management

The TOE is managed by administrators in one of eight roles: Platform Administrator, Administrator, Appliance Administrator, Appliance Operator, Policy Creator, Policy Deployer, User, and Ops. The TOE is capable of performing the following management functions: managing the Information Flow Control SFP security attributes and managing TSF data. The TOE restricts access to management functions based on the administrator's role. The Information Flow Control SFP is permissive by default, allowing information to pass between CEPs in the clear; however, authorized administrators are able to modify the Information Flow Control SFP to perform alternative operations, like dropping or encrypting the information.

#### 1.5.2.6 Protection of the TSF

The TOE protects TSF data from disclosure and modification when it is transmitted between separate parts of the TOE. The TOE uses TLSv1.2 to secure communication between CryptoFlow Net Creator and a CEP encryption appliance.

<sup>24</sup> SFP – Security Function Policy

©2019 Certes Networks, Inc.

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

The TOE and TOE environment provide reliable timestamps for the CEP encryption appliance and CryptoFlow Net Creator software, respectively. The timestamps are used to record accurate time for audit records. The time for all TOE components is synchronized using an NTP server in the TOE environment.

#### 1.5.2.7 TOE Access

The TOE terminates an inactive administrator CryptoFlow Net Creator GUI or CEP CLI session after a preconfigured time period. Administrators must re-authenticate after being logged out. This prevents an unauthorized individual from gaining access to the TOE management functions through an unattended session. Administrators may also terminate their own interactive sessions.

Before establishing a user session, the TOE displays a login banner containing an advisory warning message regarding unauthorized use of the TOE.

#### **1.5.2.8** Trusted Path/Channels

The TOE (CEP encryption appliance) provides a trusted channel between itself and another trusted IT<sup>25</sup> product (another CEP encryption appliance in this case) by encrypting and decrypting and authenticating all transmitted data using cryptographic algorithms provided by a FIPS 140-2 validated cryptographic module. It uses this trusted channel to transfer user data (Ethernet frames and IP packets) between CEP encryption appliances.

Using a supported web browser, a remote administrator initiates a secure connection to the CryptoFlow Net Creator GUI. The secure path is established using HTTPS<sup>26</sup>. Using an SSH client, a remote administrator initiates a secure connection to the CEP CLI over SSH. The HTTPS and SSH connections are used to protect data communications from modification or disclosure and ensure end point identification.

# 1.5.3 Product Physical/Logical Features and Functionality not included in the TOE

The following features and functionality are not part of the evaluated configuration of the TOE:

- Hardware and Linux OS that CryptoFlow Net Creator runs on
- Strict Authentication
- Non-Transparent Mode
- CryptoFlow Net Creator in High Availability configuration
- SNMP management of CEPs
- Email Alerts

©2019 Certes Networks, Inc.

<sup>&</sup>lt;sup>25</sup> IT – Information Technology

<sup>&</sup>lt;sup>26</sup> HTTPS – Hyper Text Transfer Protocol Secure

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

## 2. Conformance Claims

This section and Table 4 provide the identification for any CC, PP, and EAL package conformance claims. Rationale is provided for any extensions or augmentations to the conformance claims. Rationale for CC and PP conformance claims can be found in Section 8.1.

#### Table 4 – CC and PP Conformance

| PP Identification                                         | None                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Common Criteria (CC)<br>Identification and<br>Conformance | Common Criteria for Information Technology Security Evaluation, Version 3.1, Release 5, April 2017; CC Part 2 conformant; CC Part 3 conformant; PP claim (none); Parts 2 and 3 Interpretations of the CEM as of 2018/10/02 were reviewed, and no interpretations apply to the claims made in this ST. |

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

## 3. Security Problem

This section describes the security aspects of the environment in which the TOE will be used and the manner in which the TOE is expected to be employed. It provides the statement of the TOE security environment, which identifies and explains all of the following:

- Known and presumed threats countered by either the TOE or by the security environment
- Organizational security policies to which the TOE must comply
- Assumptions about the secure usage of the TOE, including physical, personnel, and connectivity aspects

## **3.1** Threats to Security

This section identifies the threats to the IT assets against which protection is required by the TOE or by the security environment. The threat agents are divided into two categories:

- Attackers who are not TOE users: They have public knowledge of how the TOE operates and are assumed to possess a low skill level, limited resources to alter TOE configuration settings or parameters, and no physical access to the TOE.
- TOE users: They have extensive knowledge of how the TOE operates and are assumed to possess a high skill level, moderate resources to alter TOE configuration settings or parameters, and physical access to the TOE (TOE users are, however, assumed not to be willfully hostile to the TOE).

Both are assumed to have a low level of motivation. The IT assets requiring protection are the TSF and user data saved on or transitioning through the TOE and the hosts on the protected network. Removal, diminution, and mitigation of the threats are through the objectives identified in Section 4 Security Objectives. Table 5 below lists the applicable threats.

#### Table 5 – Threats

| Name       | Description                                                                                                                                     |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
| T.DISCLOSE | An unauthorized person may intercept data within a packet or frame transmitted or received by the TOE when traveling over an untrusted network. |  |
| T.MODIFY   | An unauthorized person may modify a packet or frame transmitted or received by the TOE when traveling over an untrusted network.                |  |
| T.NO_AUDIT | NO_AUDIT An attacker may perform security-relevant operations on the TOE without being held accountable for them.                               |  |
| T.SPOOF    | An unauthorized person may attempt to impersonate the identity (IP address) of a trusted system.                                                |  |
| T.UNATH    | An unauthorized person may gain access to the TOE and compromise its security functions by changing its configuration.                          |  |

## **3.2** Organizational Security Policies

An Organizational Security Policy (OSP) is a set of security rules, procedures, or guidelines imposed by an organization on the operational environment of the TOE. There are no OSPs imposed upon the TOE or its operational environment by any organization implementing the TOE in the CC evaluated configuration.

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

### 3.3 Assumptions

This section describes the security aspects of the intended environment for the evaluated TOE. The operational environment must be managed in accordance with assurance requirement documentation for delivery, operation, and user guidance. Table 6 lists the specific conditions that are required to ensure the security of the TOE and are assumed to exist in an environment where this TOE is employed.

| Name        | Description                                                                                                                                                                     |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| A.INSTALL   | The TOE is installed on the appropriate, dedicated hardware and operating system.                                                                                               |  |
| A.NETCON    | The TOE environment provides the network connectivity required to allow the TOE to perform its intended functions.                                                              |  |
| A.TIMESTAMP | The IT environment provides CryptoFlow Net Creator with the necessary reliable timestamps.                                                                                      |  |
| A.LOCATE    | The TOE, management network, CryptoFlow Net Creator hardware platform, and NTP and syslog servers are all located within a controlled access facility behind a secured network. |  |
| A.PROTECT   | The TOE software will be protected from unauthorized modification.                                                                                                              |  |
| A.MANAGE    | There are one or more competent individuals assigned to manage the TOE and the security of the information it contains.                                                         |  |
| A.NOEVIL    | The users who manage the TOE are non-hostile, appropriately trained, and follow all guidance.                                                                                   |  |
| A.AUDIT     | The TOE environment will audit the shutdown of the CryptoFlow Net Creator, which is linked to the shutdown of the CryptoFlow Net Creator audit function.                        |  |

#### Table 6 – Assumptions

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

## 4. Security Objectives

Security objectives are concise, abstract statements of the intended solution to the problem defined by the security problem definition (see Section 3). The set of security objectives for a TOE form a high-level solution to the security problem. This high-level solution is divided into two part-wise solutions: the security objectives for the TOE and the security objectives for the TOE's operational environment. This section identifies the security objectives for the TOE and its supporting environment.

## 4.1 Security Objectives for the TOE

The specific security objectives for the TOE are listed in Table 7 below.

| Name           | Description                                                                                                                                                                                                                                                                                                                     |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O.ADMIN        | The TOE must include a set of functions that allow efficient management of its functions, security attributes, and TSF data, ensuring that only authorized TOE administrators (in defined roles) may exercise such control.                                                                                                     |
| O.AUDIT        | The TOE must record security relevant events with accurate dates and timestamps, associate each event with the identity of the user that caused the event, and provide authorized administrators with the ability to review the audit trail. The TOE shall send an alert email upon detection of potential security violations. |
| O.AUTHENTICATE | The TOE must be able to identify and authenticate users prior to allowing access to TOE administrative functions and TSF data.                                                                                                                                                                                                  |
| O.ENCRYPT      | The TOE must provide the means of protecting the confidentiality of information transferred across a public network between two protected networks using cryptography that conforms to standards specified in FIPS PUB <sup>27</sup> 140-2.                                                                                     |
| O.INTEGRITY    | The TOE must provide mechanisms to ensure that any attempt to corrupt or modify an IP packet or Ethernet frame flow transmitted to or from the TOE will be detected.                                                                                                                                                            |
| O.KEYMAN       | The TOE must provide the means for secure management of cryptographic keys. This includes establishment, generation, encryption, and destruction of the keys.                                                                                                                                                                   |
| O.PROTECT      | The TOE must ensure the integrity of system data by protecting itself from unauthorized modifications and access to its functions and data.                                                                                                                                                                                     |
| O.SECURE_COMM  | The TOE shall securely transfer data between a CEP device and a remote user, CryptoFlow Net Creator, or another CEP device and between CryptoFlow Net Creator and a remote user.                                                                                                                                                |

| Table 7 – Security | Objectives for the TOE |
|--------------------|------------------------|
|                    |                        |

## 4.2 Security Objectives for the Operational Environment

This section describes the environmental objectives.

## 4.2.1 IT Security Objectives

Table 8 below lists the IT security objectives that are to be satisfied by the environment.

<sup>27</sup> PUB - Publication

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

©2019 Certes Networks, Inc.

#### Table 8 – IT Security Objectives

| Name              | Description                                                                                                                                                                                                  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OE.SECURE_NETWORK | The LAN that the CryptoFlow Net Creator hardware platform, CEP, management workstation, and TOE environmental components are connected to a secure network that provides protection against outside attacks. |
| OE.TRAFFIC        | The TOE environment must be implemented such that the TOE is appropriately located within the network to perform its intended function.                                                                      |
| OE.TIMESTAMP      | NTP servers providing time information to the TOE shall be on the local network and inaccessible to non-administrators.                                                                                      |
| OE.AUDIT          | The TOE environment must audit the shutdown of CryptoFlow Net Creator, which is linked to the CryptoFlow Net Creator audit function.                                                                         |
| OE.PROTECT        | The TOE environment must protect itself and the TOE from external interference or tampering.                                                                                                                 |

## 4.2.2 Non-IT Security Objectives

Table 9 below lists the non-IT environment security objectives that are to be satisfied without imposing technical requirements on the TOE. That is, they will not require the implementation of functions in the TOE hardware and/or software. Thus, they will be satisfied largely through the application of procedural or administrative measures.

#### Table 9 – Non-IT Security Objectives

| Name             | Description                                                                                                                          |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| OE.PHYSICAL      | Those responsible for the physical security of the TOE must ensure that the TOE is protected from physical attacks.                  |
| OE.TRUSTED_ADMIN | Those responsible for the management and configuration of the TOE must be trusted and adequately trained to perform their functions. |

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

## 5. Extended Components

This section defines the extended SFRs and extended SARs met by the TOE. These requirements are presented following the conventions identified in Section 6.1.

## **5.1 Extended TOE Security Functional Components**

There are no extended TOE security functional components defined for this evaluation.

## **5.2 Extended TOE Security Assurance Components**

There are no extended TOE security assurance components defined for this evaluation.

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

## 6. Security Requirements

This section defines the SFRs and SARs met by the TOE. These requirements are presented following the conventions identified in Section 6.1.

## 6.1 Conventions

There are several font variations used within this ST. Selected presentation choices are discussed here to aid the Security Target reader.

The CC allows for assignment, refinement, selection, and iteration operations to be performed on security functional requirements. All of these operations are used within this ST with the exception of iteration. These operations are performed as described in Part 2 of the CC and are shown as follows:

- Completed assignment statements are identified using [*italicized text within brackets*].
- Completed selection statements are identified using [*underlined text within brackets*].
- Refinements are identified using **bold text**. Any text removed is stricken (Example: TSF Data) and should be considered as a refinement.
- Extended Functional and Assurance Requirements are identified using "EXT\_" at the beginning of the short name.
- Iterations are identified by appending a letter in parentheses following the component title. For example, FAU\_GEN.1(a) Audit Data Generation would be the first iteration and FAU\_GEN.1(b) Audit Data Generation would be the second iteration.

## 6.2 Security Functional Requirements

This section specifies the SFRs for the TOE. This section organizes the SFRs by CC class. Table 10 identifies all SFRs implemented by the TOE and indicates the ST operations performed on each requirement.

| Name      | Description                     | S                     | А | R | I |
|-----------|---------------------------------|-----------------------|---|---|---|
| FAU_ARP.1 | Security alarms                 |                       | ~ |   |   |
| FAU_GEN.1 | Audit data generation           | <ul> <li>✓</li> </ul> | ~ |   |   |
| FAU_GEN.2 | User identity association       |                       |   |   |   |
| FAU_SAA.1 | Potential violation analysis    |                       | ~ |   |   |
| FAU_SAR.1 | Audit review                    |                       | ~ |   |   |
| FCS_CKM.1 | Cryptographic key generation    |                       | ~ |   |   |
| FCS_CKM.2 | Cryptographic key agreement     |                       | ~ | ✓ |   |
| FCS_CKM.4 | Cryptographic key destruction   |                       | ~ |   |   |
| FCS_COP.1 | Cryptographic operation         |                       | ~ |   |   |
| FDP_IFC.1 | Subset information flow control |                       | ~ |   |   |

Table 10 – TOE Security Functional Requirements

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

| Name      | Description                                 | S                     | Α | R | I |
|-----------|---------------------------------------------|-----------------------|---|---|---|
| FDP_IFF.1 | Simple security attributes                  |                       | ~ |   |   |
| FDP_UCT.1 | Basic data exchange confidentiality         | <ul> <li>✓</li> </ul> | ~ |   |   |
| FDP_UIT.1 | Data exchange integrity                     | <ul> <li>✓</li> </ul> | ~ |   |   |
| FIA_SOS.1 | Verification of secrets                     |                       | ~ |   |   |
| FIA_UAU.2 | User authentication before any action       |                       |   |   |   |
| FIA_UAU.7 | Protected authentication feedback           |                       | ~ |   |   |
| FIA_UID.2 | User identification before any action       |                       |   |   |   |
| FMT_MSA.1 | Management of security attributes           | ✓                     | ~ |   |   |
| FMT_MSA.3 | Static attribute initialisation             | ~                     | ~ |   |   |
| FMT_MTD.1 | Management of TSF data                      | ~                     | ~ |   |   |
| FMT_SMF.1 | Specification of management functions       |                       | ~ |   |   |
| FMT_SMR.1 | Security roles                              |                       | ~ |   |   |
| FPT_ITT.1 | Basic internal TSF data transfer protection | 1                     |   |   |   |
| FPT_STM.1 | Reliable time stamps                        |                       |   | ~ |   |
| FTA_SSL.3 | TSF-initiated termination                   |                       | ~ |   |   |
| FTA_SSL.4 | User-initiated termination                  |                       |   |   |   |
| FTA_TAB.1 | Default TOE access banners                  |                       |   |   |   |
| FTP_ITC.1 | Inter-TSF trusted channel                   | ~                     | ~ |   |   |
| FTP_TRP.1 | Trusted path                                | ✓                     | ~ |   |   |

Note: S=Selection; A=Assignment; R=Refinement; I=Iteration

## 6.2.1 Class FAU: Security Audit

#### FAU\_ARP.1 Security alarms

Hierarchical to: No other components.

Dependencies: FAU\_SAA.1 Potential violation analysis

#### FAU\_ARP.1.1

The TSF shall take [action to make alert viewable via the CryptoFlow Net Creator GUI] upon detection of a potential security violation.

#### FAU\_GEN.1 Audit Data Generation

Hierarchical to: No other components.

#### Dependencies: FPT\_STM.1 Reliable time stamps

#### FAU\_GEN.1.1

The TSF shall be able to generate an audit record of the following auditable events:

- a. Start-up and shutdown of the audit functions;
- b. All auditable events, for the [not specified] level of audit; and
- c. [other specifically defined auditable events See Table 11 below].

#### FAU\_GEN.1.2

The TSF shall record within each audit record at least the following information:

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

©2019 Certes Networks, Inc.

- a. Date and time of the event, type of event, subject identity (if applicable), and the outcome (success or failure) of the event; and
- b. For each audit event type, based on the auditable event definitions of the functional components included in the PP/ST, [no other audit relevant information].

| Component              | Auditable Events                                                                                                        |  |  |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|
| CryptoFlow Net Creator | Communication operations and failures with the CEP                                                                      |  |  |  |
|                        | Successful and unsuccessful login attempts, log out activity                                                            |  |  |  |
|                        | Administrative activity (e.g., modifications to user accounts, appliance configuration changes, and p deployments)      |  |  |  |
|                        | CryptoFlow Net Creator output when CryptoFlow Net Creator starts/stops                                                  |  |  |  |
|                        | Activities regarding updates                                                                                            |  |  |  |
| CEP                    | System startup and shutdown, includes reboots and power cycles                                                          |  |  |  |
|                        | Successful and unsuccessful login attempts and log out activity                                                         |  |  |  |
|                        | Administrative activities related to CEP user accounts                                                                  |  |  |  |
|                        | Any administrative functions that result in a change to the appliance configuration and data traffic policy deployments |  |  |  |
|                        | Appliance software upgrade status                                                                                       |  |  |  |
|                        | Failure state entered                                                                                                   |  |  |  |
|                        | CEP not encrypting                                                                                                      |  |  |  |

#### Table 11 – Auditable Events

#### FAU\_GEN.2 User identity association

#### Hierarchical to: No other components.

Dependencies: FAU\_GEN.1 Audit data generation

FIA\_UID.1 Timing of identification

#### FAU\_GEN.2.1

For audit events resulting from actions of identified users, the TSF shall be able to associate each auditable event with the identity of the user that caused the event.

#### FAU\_SAA.1 Potential violation analysis

#### Hierarchical to: No other components.

#### Dependencies: FAU\_GEN.1 Audit data generation

#### FAU\_SAA.1.1

The TSF shall be able to apply a set of rules in monitoring the audited events and based upon these rules indicate a potential violation of the enforcement of the SFRs.

#### FAU\_SAA.1.2.

The TSF shall enforce the following rules for monitoring audited events:

- Accumulation or combination of [*a CEP is not encrypting*] known to indicate a potential security violation;
- [no other rules].

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

©2019 Certes Networks, Inc.

#### FAU\_SAR.1 Audit review

#### Hierarchical to: No other components. Dependencies: FAU\_GEN.1 Audit data generation

#### FAU SAR.1.1

The TSF shall provide [*Platform Administrator, Administrator, Appliance Administrator, Appliance Operator, Policy Creator, Policy Deployer, User, Ops*] with the capability to read [*all audit information*] from the audit records.

#### FAU\_SAR.1.2

The TSF shall provide the audit records in a manner suitable for the user to interpret the information.

### 6.2.2 Class FCS: Cryptographic Support

#### FCS\_CKM.1 Cryptographic key generation

Hierarchical to: No other components.

#### Dependencies: [FCS\_CKM.2 Cryptographic key distribution, or FCS\_COP.1 Cryptographic operation] FCS\_CKM.4 Cryptographic key destruction

#### FCS\_CKM.1.1

The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm [*cryptographic key generation algorithm – see Table 12 and Table 13*] and specified cryptographic key sizes [*cryptographic key sizes – see Table 12 and Table 13*] that meet the following: [*list of standards – see Table 12*].

#### Table 12 – Cryptographic Key Generation Standards for CryptoFlow Net Creator

| Key Generation Type            | Key Size      | Standards (Certificate #)                          |
|--------------------------------|---------------|----------------------------------------------------|
| AES Key                        | 128, 192, 256 | NIST <sup>28</sup> SP <sup>29</sup> 800-133 (5028) |
| ECDSA Key Pair Gen             | P-256, P-384  | FIPS PUB <sup>30</sup> 186-4 (1284)                |
| HMAC Key                       | 256, 384, 512 | FIPS PUB 198-1 (3342)                              |
| Pseudo Random Number Generator | 256           | NIST SP 800-90A (1842)                             |

#### Table 13 – Cryptographic Key Generation Standards for CEP

| Key Generation Type            | Key Size                                  | Standards (Certificate #) |
|--------------------------------|-------------------------------------------|---------------------------|
| AES Key                        | 128, 192, 256                             | NIST SP 800-133 (5338)    |
| ECDSA Key Pair Gen             | P-224 <sup>31</sup> , P-256, P-384, P-521 | FIPS PUB 186-4 (1402)     |
| НМАС Кеу                       | 160 <sup>32</sup> , 256, 384, 512         | FIPS PUB 198-1 (3535)     |
| Pseudo Random Number Generator | 256                                       | NIST SP 800-90A (2061)    |

<sup>31</sup> P-224 used only for pairwise consistency test.

<sup>32</sup> HMAC 160 used only for SNMP, which is outside the scope of the evaluation.

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

©2019 Certes Networks, Inc.

<sup>&</sup>lt;sup>28</sup> NIST – National Institute of Standards and Technology

<sup>&</sup>lt;sup>29</sup> SP – Special Publication

<sup>&</sup>lt;sup>30</sup> PUB – Publication

#### FCS\_CKM.2 Cryptographic key agreement (Refinement)

Hierarchical to: No other components.

Dependencies: [FDP\_ITC.1 Import of user data without security attributes, or

#### FDP\_ITC.2 Import of user data with security attributes, or

#### FCS\_CKM.1 Cryptographic key generation]

FCS\_CKM.4 Cryptographic key destruction

#### FCS\_CKM.2.1

The TSF shall **perform cryptographic key agreement** in accordance with a specified cryptographic key **agreement** method: [

• Elliptic curve-based key establishment schemes that meet the following: NIST Special Publication 800-56A, "Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography";

] that meets the following: [assignment: list of standards].

#### FCS\_CKM.4 Cryptographic key destruction

Hierarchical to: No other components.

Dependencies: [FDP\_ITC.1 Import of user data without security attributes, or

FDP\_ITC.2 Import of user data with security attributes, or

FCS\_CKM.1 Cryptographic key generation]

#### FCS\_CKM.4.1

The TSF shall destroy cryptographic keys in accordance with a specified cryptographic key destruction method [*zeroization*] that meets the following: [*FIPS 140-2 zeroization requirements*].

#### FCS\_COP.1 Cryptographic operation

Hierarchical to: No other components.

Dependencies: [FDP\_ITC.1 Import of user data without security attributes, or

FDP\_ITC.2 Import of user data with security attributes, or

FCS\_CKM.1 Cryptographic key generation]

FCS\_CKM.4 Cryptographic key destruction

#### FCS\_COP.1.1

The TSF shall perform [*cryptographic operations* – *see Table 14* and *Table 15*] in accordance with a specified cryptographic algorithm [*cryptographic algorithm* – *see Table 14* and *Table 15*] and cryptographic key sizes [*cryptographic key sizes* – *see Table 14* and *Table 15*] that meet the following: [*list of standards* – *see Table 14* and *Table 15*].

| Cryptographic Operations                      | Cryptographic Algorithm                                         | Key Sizes (bits) | Standards (Certificate #)                                 |
|-----------------------------------------------|-----------------------------------------------------------------|------------------|-----------------------------------------------------------|
| Key Pair Generation and Verification          | ECDSA                                                           | P-256, P-384     | FIPS PUB 186-4 (1284)                                     |
| Digital Signature Generation and Verification | ECDSA                                                           | P-256, P-384     | FIPS PUB 186-4 (1284)                                     |
| Key Agreement                                 | ECC CDH <sup>33</sup> primitive                                 | P-256, P-384     | NIST SP 800-56A (1574)                                    |
| Symmetric Encryption and Decryption           | AES (CBC, ECB <sup>34</sup> , CCM <sup>35</sup> , and GCM mode) | 128, 192, 256    | FIPS PUB 197<br>NIST SP 800-38C<br>NIST SP 800-38D (5028) |

<sup>33</sup> ECC CDH – Elliptic Curve Cryptography Cofactor Diffie-Hellman

<sup>34</sup> ECB – Electronics Code Book

<sup>35</sup> CCM – Counter with CBC-MAC

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

©2019 Certes Networks, Inc.

| Cryptographic Operations | Cryptographic Algorithm | Key Sizes (bits)         | Standards (Certificate #) |
|--------------------------|-------------------------|--------------------------|---------------------------|
| Message Authentication   | HMAC-SHA-2              | 256<br>384<br>512        | FIPS PUB 198-1 (3342)     |
| Message Digest           | SHA-1<br>SHA-2          | 160<br>256<br>384<br>512 | FIPS PUB 198-1 (4087)     |
| DRBG <sup>36</sup>       | AES-CTR <sup>37</sup>   | 256                      | NIST SP 800-90A (1842)    |

#### Table 15 – Cryptographic Operations of the CEP

| Cryptographic Operations                      | Cryptographic Algorithm                                                   | Key Sizes (bits)           | Standards (Certificate #)                                 |
|-----------------------------------------------|---------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------|
| Key Pair Generation and Verification          | ECDSA PKG                                                                 | P-224, P-256, P-384, P-521 | FIPS PUB 186-4 (1402)                                     |
| Digital Signature Generation and Verification | ECDSA SigGen, SigVer                                                      | P-224, P-256, P-384, P-521 | FIPS PUB 186-4 (1402)                                     |
| Key Agreement                                 | ECC CDH primitive                                                         | P-224, P-256, P-384, P-521 | NIST SP 800-56A (1800)                                    |
| Symmetric Encryption and Decryption           | AES (CBC, CFB128 <sup>38</sup> , ECB, CMAC <sup>39</sup> , and GCM modes) | 128, 192, 256              | FIPS PUB 197<br>NIST SP 800-38A<br>NIST SP 800-38D (5338) |
| Message Authentication                        | HMAC-SHA-1,<br>HMAC-SHA-2                                                 | 160<br>256<br>384<br>512   | FIPS PUB 198-1 (3535)                                     |
| Message Digest                                | SHA-1<br>SHA-2                                                            | 160<br>256<br>384<br>512   | FIPS PUB 180-4 (4289)                                     |
| DRBG                                          | AES-CTR                                                                   | 256                        | NIST SP 800-90A (2061)                                    |
| Key Derivation, KBKDF <sup>40</sup>           | Counter mode with AES-CMAC                                                |                            | NIST SP 800-108 (193)                                     |
| Key Derivation                                | TLSv1.2, SSHv2, and SNMPv3                                                |                            | NIST SP 800-135rev1<br>(1827, 1828, and 1829)             |

## 6.2.3 Class FDP: User Data Protection

#### FDP\_IFC.1 Subset information flow control

Hierarchical to: No other components.

Dependencies: FDP\_IFF.1 Simple security attributes

```
FDP_IFC.1.1
```

The TSF shall enforce the [*Information Flow Control SFP*] on [

©2019 Certes Networks, Inc.

<sup>&</sup>lt;sup>36</sup> DRBG – Deterministic Random Bit Generator

<sup>&</sup>lt;sup>37</sup> CTR – Counter

<sup>&</sup>lt;sup>38</sup> CFB – Cipher Feedback

<sup>&</sup>lt;sup>39</sup> CMAC – Cipher-based Message Authentication Code

<sup>&</sup>lt;sup>40</sup> KBKDF – Key-based Key Derivation Function

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

Subjects: External IT entities<sup>41</sup> that send or receive information through the TOE Information: Ethernet Frames or IP packets Operations: Encrypt/decrypt, clear or drop ].

#### FDP\_IFF.1 Simple security attributes

Hierarchical to: No other components.

Dependencies: FDP\_IFC.1 Subset information flow control FMT\_MSA.3 Static attribute initialization

#### FDP\_IFF.1.1

The TSF shall enforce the [*Information Flow Control SFP*] based on the following types of subject and information security attributes:

[

Subject attributes:

- 1. Topology
- 2. IP address

Information attributes:

- 1. Source IP Address
- 2. Destination IP Address
- 3. Source port number
- 4. Destination port number
- 5. Protocol ID
- 6. VLAN ID

#### ].

#### FDP\_IFF.1.2

The TSF shall permit an information flow between a controlled subject and controlled information via a controlled operation if the following rules hold: [an SA is negotiated and agreed upon for the transmission of Ethernet frames or IP packets].

#### FDP\_IFF.1.3

The TSF shall enforce the [no additional information flow control SFP rules].

#### FDP\_IFF.1.4

The TSF shall explicitly authorize an information flow based on the following rules: [none].

#### FDP\_IFF.1.5

The TSF shall explicitly deny an information flow based on the following rules: [none].

#### FDP\_UCT.1 Basic data exchange confidentiality

Hierarchical to: No other components.

Dependencies: [FTP\_ITC.1 Inter-TSF trusted channel, or

FTP\_TRP.1 Trusted path]

[FDP\_ACC.1 Subset access control, or

FDP\_IFC.1 Subset information flow control]

©2019 Certes Networks, Inc.

<sup>&</sup>lt;sup>41</sup> In the case of this SFR, trusted external IT entities refers to user workstations sending traffic between CEPs. External IT entities could also refer to traffic originating from another CEP, management workstations used by administrators to manage the TOE, or any other device intended to send traffic to the TOE (switches, routers, NTP servers, etc.).

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

#### FDP\_UCT.1.1

The TSF shall enforce the [*Information Flow Control SFP*] to be able to [*transmit, receive*] user data in a manner protected from unauthorized disclosure.

#### FDP\_UIT.1 Data exchange integrity

Hierarchical to: No other components.

Dependencies: [FDP\_ACC.1 Subset access control, or

FDP\_IFC.1 Subset information flow control] [FTP\_ITC.1 Inter-TSF trusted channel, or FTP\_TRP.1 Trusted path]

#### FDP\_UIT.1.1

The TSF shall enforce the [*Information Flow Control SFP*] to be able to [*transmit, receive*] user data in a manner protected from [*modification, insertion*] errors.

#### FDP\_UIT.1.2

The TSF shall be able to determine on receipt of user data, whether [*modification, insertion*] has occurred.

### 6.2.4 Class FIA: Identification and Authentication

#### FIA\_SOS.1 Verification of secrets

#### Hierarchical to: No other components.

Dependencies: No dependencies

#### FIA\_SOS.1.1

The TSF shall provide a mechanism to verify that secrets meet [a defined quality metric – see Table 16].

| Parameters       | Conventions                                                                                                                    |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| Length           | Minimum 8                                                                                                                      |  |
| Case sensitive   | Yes                                                                                                                            |  |
| Valid characters | a-z A-Z 0-9 ! @ # % ^ * + = { } : . , _ ~ / \ - [ ]                                                                            |  |
| Spaces allowed   | Yes                                                                                                                            |  |
| Dictionary words | Not allowed*                                                                                                                   |  |
| Mix              | Must contain at least 2 characters from a mix of upper-case letters, lower case letters, numbers, and non-alphanumeric symbols |  |

#### Table 16 – Password Conventions

\*Application Note: Passwords that have a dictionary word are rejected by the CEP. While the CFNC does not reject dictionary words, it mitigates any risk by implementing an administrator-configured limit on the number of allowed failed authentication attempts.

FIA\_UAU.2 User authentication before any action

#### Hierarchical to: FIA\_UAU.1 Timing of authentication Dependencies: FIA\_UID.1 Timing of identification FIA\_UAU.2.1

The TSF shall require each user to be successfully authenticated before allowing any other TSF-mediated actions on behalf of that user.

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

©2019 Certes Networks, Inc.

#### FIA\_UAU.7 Protected authentication feedback

Hierarchical to: No other components. Dependencies: FIA\_UAU.1 Timing of authentication FIA\_UAU.7.1

The TSF shall provide only [*obscured feedback via CryptoFlow Net Creator GUI and no feedback via CEP CLI*] to the user while the authentication is in progress.

#### FIA\_UID.2 User identification before any action

#### Hierarchical to: FIA\_UID.1 Timing of identification

#### **Dependencies: No dependencies**

#### FIA\_UID.2.1

The TSF shall require each user to be successfully identified before allowing any other TSF-mediated actions on behalf of that user.

### 6.2.5 Class FMT: Security Management

#### FMT\_MSA.1 Management of security attributes

Hierarchical to: No other components.

Dependencies: [FDP\_ACC.1 Subset access control or

FDP\_IFC.1 Subset information flow control] FMT\_SMF.1 Specification of management functions

FMT\_SMR.1 Security roles

#### FMT\_MSA.1.1

The TSF shall enforce the [*Information Flow Control SFP*] to restrict the ability to [*change\_default, query,* <u>modify, delete</u>] the security attributes [*in the policy rules*] to [*Platform Administrator, Administrator, Policy Creator*].

#### FMT\_MSA.3 Static attribute initialization

Hierarchical to: No other components. Dependencies: FMT\_MSA.1 Management of security attributes FMT\_SMR.1 Security roles

#### FMT\_MSA.3.1

The TSF shall enforce the [*Information Flow Control SFP*] to provide [*permissive*] default values for security attributes that are used to enforce the SFP.

#### FMT\_MSA.3.2

The TSF shall allow the [*Platform Administrator, Administrator, Policy Creator*] to specify alternative initial values to override the default values when an object or information is created.

#### FMT\_MTD.1 Management of TSF data

Hierarchical to: No other components.

#### Dependencies: FMT\_SMF.1 Specification of management functions

#### FMT\_SMR.1 Security roles

#### FMT\_MTD.1.1

The TSF shall restrict the ability to [*operations* – *see Table 17* and *Table 18*] the [*list of TSF data* – see *Table 17* and *Table 18*] to [*the authorized identified roles* – see *Table 17* and *Table 18*].

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

©2019 Certes Networks, Inc.

| Operation      | TSF Data                              | Platform<br>Administrator | Administrator | User | Appliance<br>Admin | Appliance<br>Operator | Policy<br>Creator | Policy<br>Deployer |
|----------------|---------------------------------------|---------------------------|---------------|------|--------------------|-----------------------|-------------------|--------------------|
| Modify         | Users and Passwords                   | х                         | х             |      |                    |                       |                   |                    |
| Modify         | Password expiration                   | Х                         | Х             |      |                    |                       |                   |                    |
| Create, Delete | Users                                 | Х                         | Х             |      |                    |                       |                   |                    |
| Modify         | Usernames and passwords               | Х                         | Х             |      |                    |                       |                   |                    |
| Change         | Own password                          | Х                         | Х             |      |                    |                       |                   |                    |
| Modify         | User's assigned role                  | Х                         | Х             |      |                    |                       |                   |                    |
| View           | Audit logs and performance statistics | Х                         | Х             | х    | Х                  | х                     | Х                 | Х                  |
| Configure      | Policies                              | Х                         | Х             |      |                    |                       | Х                 |                    |
| Deploy         | Policies and keys                     | Х                         | Х             |      |                    |                       |                   | х                  |
| Modify         | Inactivity timeout interval           | Х                         | Х             |      |                    |                       |                   |                    |
| Configure      | Appliances                            | Х                         | Х             |      | х                  |                       |                   |                    |
| View           | Appliance statistics                  | Х                         | Х             |      | х                  | Х                     |                   |                    |

#### Table 17 – Management of TSF Data for CryptoFlow Net Creator

#### Table 18 – Management of TSF Data for CEP CLI

| Operation             | TSF Data                                   | Administrator | Ops             |
|-----------------------|--------------------------------------------|---------------|-----------------|
| Create                | Administrator accounts (username and role) | х             |                 |
| Delete                | Administrator accounts                     | Х             |                 |
| Modify                | Administrator's password                   | Х             |                 |
| Change                | Own password                               | Х             | х               |
| Modify                | Administrator's assigned role              | Х             |                 |
| View                  | Audit logs and performance statistics      | Х             | X <sup>42</sup> |
| Configure policy mode | CEP policy mode (Layer 2 or Layer 3)       | Х             |                 |
| Modify                | CLI inactivity timeout interval            | х             |                 |

#### FMT\_SMF.1 Specification of Management Functions

#### Hierarchical to: No other components.

#### **Dependencies:** No Dependencies

#### FMT\_SMF.1.1

The TSF shall be capable of performing the following management functions: [management of Information Flow Control SFP security attributes, management of TSF data – see Table 17 and Table 18].

#### FMT\_SMR.1 Security roles

#### Hierarchical to: No other components. Dependencies: FIA\_UID.1 Timing of identification

©2019 Certes Networks, Inc.

<sup>&</sup>lt;sup>42</sup> Ops user role can view certain audit logs via the CEP CLI show system-log command but cannot execute the show audit-log command. Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

#### FMT\_SMR.1.1

The TSF shall maintain the roles [the authorized identified roles – see Table 19 below].

#### FMT\_SMR.1.2

The TSF shall be able to associate users with roles.

| Component              | Roles                  |
|------------------------|------------------------|
| CryptoFlow Net Creator | Platform Administrator |
|                        | Administrator          |
|                        | Appliance Admin        |
|                        | Appliance Operator     |
|                        | Policy Creator         |
|                        | Policy Deployer        |
|                        | User                   |
| CEP                    | Administrator          |
|                        | Ops                    |

#### Table 19 – User Roles

### 6.2.6 Class FPT: Protection of the TSF

#### FPT\_ITT.1 Basic internal TSF data transfer protection

Hierarchical to: No other components.

#### Dependencies: No dependencies

FPT\_ITT.1.1

The TSF shall protect TSF data from [*disclosure, modification*] when it is transmitted between separate parts of the TOE.

#### FPT\_STM.1 Reliable time stamps

Hierarchical to: No other components.

#### Dependencies: No dependencies

FPT\_STM.1.1

The TSF shall be able to provide reliable timestamps for CEP.

### 6.2.7 Class FTA: TOE Access

#### FTA\_SSL.3 TSF-initiated termination

Hierarchical to: No other components.

#### **Dependencies: No dependencies**

FTA\_SSL.3.1

The TSF shall terminate an interactive session after a [time interval of user inactivity as configured by an administrator].

#### FTA\_SSL.4 User-initiated termination

#### Hierarchical to: No other components.

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

©2019 Certes Networks, Inc.

#### **Dependencies: No dependencies**

#### FTA\_SSL.4.1

The TSF shall allow user-initiated termination of the user's own interactive session.

#### FTA\_TAB.1 Default TOE access banners

#### Hierarchical to: No other components.

#### **Dependencies: No dependencies**

#### FTA\_TAB.1.1

Before establishing a user session, the TSF shall display an advisory warning message regarding unauthorized use of the TOE.

## 6.2.8 Class FTP: Trusted Path/Channels

#### FTP\_ITC.1 Inter-TSF trusted channel

#### Hierarchical to: No other components.

#### Dependencies: No dependencies

#### FTP\_ITC.1.1

The TSF shall provide a communication channel between itself and another trusted IT product that is logically distinct from other communication channels and provides assured identification of its end points and protection of the channel data from modification or disclosure.

#### FTP\_ITC.1.2

The TSF shall permit [*the TSF*] to initiate communication via the trusted channel.

#### FTP\_ITC.1.3

The TSF shall initiate communication via the trusted channel for [transfer of user data between CEPs].

#### FTP\_TRP.1 Trusted path

#### Hierarchical to: No other components.

#### Dependencies: No dependencies

#### FTP\_TRP.1.1

The TSF shall provide a communication path between itself and [<u>remote</u>] users that is logically distinct from other communication paths and provides assured identification of its end points and protection of the communicated data from [<u>modification, disclosure</u>].

#### FTP\_TRP.1.2

The TSF shall permit [*remote users*] to initiate communication via the trusted path.

#### FTP\_TRP.1.3

The TSF shall require the use of the trusted path for [initial user authentication, [HTTPS connections to the CryptoFlow Net Creator GUI, SSH connections to the CEP CLI]].

### 6.3 Security Assurance Requirements

This section defines the assurance requirements for the TOE. Assurance requirements are taken from the CC Part 3 and are EAL4 augmented with ALC\_FLR.3. Table 20 summarizes these requirements.

#### Table 20 – Assurance Requirements

| Assurance Requirements                |                              |
|---------------------------------------|------------------------------|
| Class ASE: Security Target evaluation | ASE_CCL.1 Conformance claims |

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

©2019 Certes Networks, Inc.

| Assurance Requirements              |                                                                    |  |  |  |
|-------------------------------------|--------------------------------------------------------------------|--|--|--|
|                                     | ASE_ECD.1 Extended components definition                           |  |  |  |
|                                     | ASE_INT.1 ST introduction                                          |  |  |  |
|                                     | ASE_OBJ.2 Security objectives                                      |  |  |  |
|                                     | ASE_REQ.2 Derived security requirements                            |  |  |  |
|                                     | ASE_SPD.1 Security problem definition                              |  |  |  |
|                                     | ASE_TSS.1 TOE summary specification                                |  |  |  |
| Class ALC: Life Cycle Support       | ALC_CMC.4 Production support, acceptance procedures and automation |  |  |  |
|                                     | ALC_CMS.4 Problem tracking CM <sup>43</sup> coverage               |  |  |  |
|                                     | ALC_DEL.1 Delivery procedures                                      |  |  |  |
|                                     | ALC_DVS.1 Identification of security measures                      |  |  |  |
|                                     | ALC_LCD.1 Developer defined life-cycle model                       |  |  |  |
|                                     | ALC_TAT.1 Well-defined development tools                           |  |  |  |
|                                     | ALC_FLR.3 Systematic flaw remediation                              |  |  |  |
| Class ADV: Development              | ADV_ARC.1 Security architecture description                        |  |  |  |
|                                     | ADV_FSP.4 Complete functional specification                        |  |  |  |
|                                     | ADV_IMP.1 Implementation representation of the TSF                 |  |  |  |
|                                     | ADV_TDS.3 Basic modular design                                     |  |  |  |
| Class AGD: Guidance documents       | AGD_OPE.1 Operational user guidance                                |  |  |  |
|                                     | AGD_PRE.1 Preparative procedures                                   |  |  |  |
| Class ATE: Tests                    | ATE_COV.2 Analysis of coverage                                     |  |  |  |
|                                     | ATE_DPT.1 Testing: basic design                                    |  |  |  |
|                                     | ATE_FUN.1 Functional testing                                       |  |  |  |
|                                     | ATE_IND.2 Independent testing – sample                             |  |  |  |
| Class AVA: Vulnerability assessment | AVA_VAN.3 Focused vulnerability analysis                           |  |  |  |

<sup>43</sup> CM – Configuration Management

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

©2019 Certes Networks, Inc.

## 7. TOE Security Specification

This section presents information to detail how the TOE meets the functional requirements described in previous sections of this ST.

## 7.1 **TOE Security Functionality**

Each of the security requirements and the associated descriptions correspond to a security functionality. Hence, each security functionality is described by how it specifically satisfies each of its related requirements. This serves to both describe the security functionality and rationalize that the security functionality satisfies the necessary requirements. Table 21 lists the security functionality and their associated SFRs.

| TOE Security Functionality               | SFR ID    | Description                                 |
|------------------------------------------|-----------|---------------------------------------------|
| Security Audit                           | FAU_ARP.1 | Security alarms                             |
|                                          | FAU_GEN.1 | Audit Data Generation                       |
|                                          | FAU_GEN.2 | User Identity Association                   |
|                                          | FAU_SAA.1 | Potential violation analysis                |
|                                          | FAU_SAR.1 | Audit review                                |
| Cryptographic Support                    | FCS_CKM.1 | Cryptographic key generation                |
|                                          | FCS_CKM.2 | Cryptographic key agreement                 |
|                                          | FCS_CKM.4 | Cryptographic key destruction               |
|                                          | FCS_COP.1 | Cryptographic operation                     |
| User Data Protection                     | FDP_IFC.1 | Subset information flow control             |
|                                          | FDP_IFF.1 | Simple security attributes                  |
|                                          | FDP_UCT.1 | Basic data exchange confidentiality         |
|                                          | FDP_UIT.1 | Data exchange integrity                     |
| Identification and Authentication        | FIA_SOS.1 | Verification of secrets                     |
|                                          | FIA_UAU.2 | User authentication before any action       |
|                                          | FIA_UAU.7 | Protected authentication feedback           |
|                                          | FIA_UID.2 | User identification before any action       |
| Security Management                      | FMT_MSA.1 | Management of security attributes           |
|                                          | FMT_MSA.3 | Static attribute initialisation             |
|                                          | FMT_MTD.1 | Management of TSF data                      |
|                                          | FMT_SMF.1 | Specification of management functions       |
|                                          | FMT_SMR.1 | Security roles                              |
| Protection of TOE Security Functionality | FPT_ITT.1 | Basic internal TSF data transfer protection |
|                                          | FPT_STM.1 | Reliable time stamps                        |

Table 21 – Mapping of TOE Security Functionality to Security Functional Requirements

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

| TOE Security Functionality | SFR ID    | Description                |
|----------------------------|-----------|----------------------------|
| TOE Access                 | FTA_SSL.3 | TSF-initiated termination  |
|                            | FTA_SSL.4 | User-initiated termination |
|                            | FTA_TAB.1 | Default TOE access banners |
| Trusted Path/Channels      | FTP_ITC.1 | Inter-TSF trusted channel  |
|                            | FTP_TRP.1 | Trusted path               |

## 7.1.1 Security Audit

The TOE generates audit records for start-up and shutdown of the CEP encryption appliance and CryptoFlow Net Creator as well as the events listed in Table 11. These records contain the following information:

- Date and time of the event
- Type of event
- Identity of subject
- Outcome of the event

CEP log files are stored in the CEP file system and can be viewed by authorized administrators from the CEP CLI using the show audit-log and show system-log commands. CryptoFlow Net Creator audit logs can be viewed by authorized administrators through the Admin  $\rightarrow$  Audit Log menu item. CEP logs can also be retrieved (exported from the CEP) and viewed through the CryptoFlow Net Creator GUI. Audit records are displayed in a human-readable format and show the identity of the user that triggered the event.

The TOE applies a set of rules to monitor the audited events and based upon these rules indicates a potential violation of the enforcement of the SFRs by displaying an alert at the CryptoFlow Net Creator GUI. Specifically, the TOE will detect if a CEP is not encrypting.

**TOE Security Functional Requirements Satisfied:** FAU\_ARP.1, FAU\_GEN.1, FAU\_GEN.2, FAU\_SAA.1, FAU\_SAR.1

## 7.1.2 Cryptographic Support

The TOE uses two FIPS 140-2 validated cryptographic modules to perform the cryptographic operations listed in Table 14.

The FIPS cryptographic modules are used to provide the following functionality:

- Secure communications from remote administrators to the CryptoFlow Net Creator GUI relies on the symmetric encryption and decryption operations, HMAC-SHA-2 for message authentication, ECC CDH primitive for key agreement, and ECDSA for digital signatures
- Secure communications from remote administrators to the CEP CLI relies on the symmetric encryption and decryption operations, HMAC-SHA-2 for message authentication, ECC CDH primitive for key agreement, and ECDSA for the HostKey algorithms
- Data confidentiality of IP packets and Ethernet frames relies on the symmetric encryption and decryption operations

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

- Data origin authentication of IP packets and Ethernet frames relies on HMAC-SHA-2
- Secure communications between CryptoFlow Net Creator and the CEPs using TLSv1.2 relies on the symmetric encryption and decryption operations, HMAC-SHA-2 for message authentication, ECC CDH primitive for key agreement, and ECDSA for digital signatures
- TOE operator passwords are stored in hashed format using the SHA-512 algorithm
- ECDSA public key is used to authenticate firmware uploads
- SHA-1 is only used in the CRC<sup>44</sup> check of the license string.

The TOE uses the FIPS cryptographic modules to generate the asymmetric and symmetric keys with key sizes as listed in Table 12. The keys are generated by an AES-CTR DRBG, no derivation. The TOE uses an Elliptic curvebased key agreement scheme that meets the following standard: NIST SP 800-56A, "Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography".

All cryptographic keys generated by the TOE are destroyed by overwriting them with zeroes according to FIPS 140-2 zeroization methods. TOE user data encryption keys are destroyed after the SA lifetime has expired.

**TOE Security Functional Requirements Satisfied:** FCS\_CKM.1, FCS\_CKM.2, FCS\_CKM.4, FCS\_COP.1.

### 7.1.3 User Data Protection

The User Data Protection function implements an Information Flow Control policy on user traffic flowing through the TOE. The Information Flow Control SFP enforces rules on subjects that transmit or receive traffic through the TOE. The rules determine what types of operations should be applied to the traffic as the traffic is flowing through the TOE based on the source IP address, destination IP address, source port number, destination port number, protocol ID, and VLAN tag ID.

If the operation in the policy is defined as "encrypt", then the Ethernet frames or IP Packets will be passed with the Ethernet Payload or IP Payload encrypted or decrypted, as appropriate. If the operation in the Policy is defined as "clear", then the Ethernet frames or IP Packets will be passed with the Ethernet Payload or IP Payload without modification. If the operation in the Policy is defined as "drop", then the Ethernet frames or IP Packets will be discarded without further action.

The TOE implements ESP as the IPSec security protocol, which provides confidentiality, integrity, and data origin authentication. The TOE provides confidentiality services by implementing the AES cipher in CBC and GCM mode. The TOE generates cryptographic keys required for encryption in accordance with the AES algorithm. Keys are destroyed after the SA has expired. The TOE provides integrity services by implementing SHA-2. The TOE provides data origin authentication services for the IP packet or Ethernet frame by implementing HMAC-SHA-2. For each packet or frame, this creates a cryptographic checksum ensuring that only the external IT entities (users sending traffic through the CEP) having knowledge of the keys could have sent the packet or the frame.

**TOE Security Functional Requirements Satisfied:** FDP\_IFC.1, FDP\_IFF.1, FDP\_UCT.1, FDP\_UIT.1.

<sup>44</sup> CRC – Cyclic Redundancy Check

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

©2019 Certes Networks, Inc.

## 7.1.4 Identification and Authentication

The TOE provides functionality that enables authorized administrators to effectively manage the TOE and its security functions.

The TOE requires administrators to enter a correct username and password before allowing any action to take place. The authentication check is intended to prevent an unauthorized person from adding, deleting, or modifying appliance configurations or policies.

In the evaluated configuration, default passwords must be changed from their initial values after the first login. The CryptoFlow Net Creator Platform Administrator logs in first and creates other users, granting them roles and setting their passwords. The CEP Administrator logs in first and sets the Administrator's and Ops passwords. The Platform Administrator and Administrator set their own passwords after their first login. The TOE obscures passwords while authentication is in process using a bullet (•) in place of each character for the CryptoFlow Net Creator GUI and no feedback for the CEP CLI. The password requirements for the TOE are as specified in Table 16.

**TOE Security Functional Requirements Satisfied:** FIA\_SOS.1, FIA\_UAU.2, FIA\_UAU.7, FIA\_UID.2

### 7.1.5 Security Management

The Security Management function specifies the management of several aspects of the TSF, including security function behavior and security attributes. The permissions of the administrator roles are also defined in Table 17 and Table 18.

The TOE provides authorized administrators the capability to configure the TOE and its security policies to secure the data and management paths. CryptoFlow Net Creator provides seven administrative roles: Platform Administrator, Administrator, Appliance Admin, Appliance Operator, Policy Creator, Policy Deployer, and User. The TSF maintains a list of permissions for all seven roles. When an administrator logs in and authenticates through the CryptoFlow Net Creator GUI, the TSF shall be able to associate that administrator with one or more of the above roles.

The CEP has two administrative roles: Administrator and Ops. The Administrator role has privileges to manage users, configure the appliance, and create and deploy policies. The Ops role has access to a limited set of CEP CLI commands for initial appliance configuration, status reporting and diagnostics (via show commands).

The TOE uses permissive default values for security attributes that are used to enforce the information flow control SFP. The TOE will allow the authorized user to override the default values by specifying alternative initial values.

**TOE Security Functional Requirements Satisfied:** FMT\_MSA.1, FMT\_MSA.3, FMT\_MTD.1, FMT\_SMF.1, FMT\_SMR.1.

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

©2019 Certes Networks, Inc.

## 7.1.6 Protection of the TSF

The TOE protects TSF data from disclosure and modification when it is transmitted between separate parts of the TOE. The TOE uses TLSv1.2 to secure communication between CryptoFlow Net Creator and a CEP encryption appliance.

The TOE boundary for the CEP includes the hardware and system clock, and therefore the CEP gets the reliable timestamps from the CEP appliance's system clock. The hardware and Linux OS that CryptoFlow Net Creator is installed on is not included in the TOE boundary, and therefore the TOE environment provides the reliable timestamps for CryptoFlow Net Creator.

All the TOE component's times are synchronized with the NTP server. The CEP uses the time from the NTP server to update its system clock used to provide reliable timestamps. The order of the audit records are determined by the value of the timestamps. The time can be synchronized to Coordinated Universal Time manually through the configuration settings. Administrators are assumed to be trusted and competent and may change the system time whenever necessary.

**TOE Security Functional Requirements Satisfied:** FPT\_ITT.1, FPT\_STM.1.

## 7.1.7 TOE Access

The TOE will terminate an administrator CEP CLI or CryptoFlow Net Creator GUI session after an administratordefined interval of inactivity. Each time a login is completed, the inactivity-timeout value is updated. If the time since the last activity time exceeds the inactivity-timeout value, the administrator is logged out. The cli inactivity-timer command sets an inactivity timer for the CEP CLI. The timer applies to a CEP CLI session initiated through the serial port or SSH. Administrators may also terminate their own interactive sessions.

Before establishing a user session, the TOE displays a login banner containing an advisory warning message regarding unauthorized use of the TOE.

**TOE Security Functional Requirements Satisfied:** FTA\_SSL.3, FTA\_SSL.4, FTA\_TAB.1

## 7.1.8 Trusted Path/Channels

The trusted path function guarantees a secure channel that the TOE can use to communicate with remote administrators via HTTPS (CryptoFlow Net Creator GUI) and SSH (CEP CLI). The HTTPS and SSH connections are used to protect data communications from modification or disclosure and ensure end point identification.

The TOE provides a trusted channel between CEPs by encrypting and decrypting all transmitted data using cryptographic algorithms provided by a FIPS 140-2 validated cryptographic module. It uses this trusted channel to transfer user data. Only the TOE can initiate this secure channel communication.

**TOE Security Functional Requirements Satisfied:** FTP\_ITC.1, FTP\_TRP.1

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

# 8. Rationale

### 8.1 **Conformance Claims Rationale**

This Security Target conforms to Part 2 and Part 3 of the *Common Criteria for Information Technology Security Evaluation*, Version 3.1 Release 5.

### 8.2 Security Objectives Rationale

This section provides a rationale for the existence of each threat, policy statement, and assumption that compose the Security Target. Sections 8.2.1, 8.2.2, and 8.2.3 demonstrate that the mappings between the threats, policies, and assumptions to the security objectives are complete. The following discussion provides detailed evidence of coverage for each threat, policy, and assumption.

### 8.2.1 Security Objectives Rationale Relating to Threats

Table 22 below provides a mapping of the objectives to the threats they counter.

| Threats                                                                                                                                               | Objectives                                                                                                                                                                                                 | Rationale                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| data within a packet or frame                                                                                                                         | across a public network between two protected                                                                                                                                                              | O.ENCRYPT counters this threat by ensuring<br>that information traveling over a public network<br>cannot be intercepted by an un-authorized<br>person. The confidentiality is assured by<br>encryption operations. |
|                                                                                                                                                       | O.KEYMAN<br>The TOE must provide the means for secure<br>management of cryptographic keys. This<br>includes establishment, generation, encryption,<br>and destruction of the keys.                         | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                            |
|                                                                                                                                                       | O.SECURE_COMM<br>The TOE shall securely transfer data between a<br>CEP device and a remote user, CryptoFlow Net<br>Creator, or another CEP device and between<br>CryptoFlow Net Creator and a remote user. | O.SECURE_COMM counters this threat by ensuring that data traveling between CEPs is transferred securely.                                                                                                           |
| T.MODIFY<br>An unauthorized person may modify a<br>packet or frame transmitted or<br>received by the TOE when traveling<br>over an untrusted network. | ·                                                                                                                                                                                                          | O.INTEGRITY counters this threat by ensuring<br>that the information traveling over a public<br>network cannot be modified by an un-<br>authorized person.                                                         |
|                                                                                                                                                       | O.SECURE_COMM<br>The TOE shall securely transfer data between a<br>CEP device and a remote user, CryptoFlow Net<br>Creator, or another CEP device and between<br>CryptoFlow Net Creator and a remote user. | O.SECURE_COMM counters this threat by ensuring that data traveling between CEPs is transferred securely.                                                                                                           |

### Table 22 – Threats: Objectives Mapping

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

©2019 Certes Networks, Inc.

| Threats                                                                                                                                    | Objectives                                                                                                                                                                                                                                                                                                                                                   | Rationale                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T.NO_AUDIT<br>An attacker may perform security-<br>relevant operations on the TOE<br>without being held accountable for<br>them.           | O.AUDIT<br>The TOE must record security relevant events<br>with accurate dates and timestamps, associate<br>each event with the identity of the user that<br>caused the event, and provide authorized<br>administrators with the ability to review the<br>audit trail. The TOE shall send an alert email<br>upon detection of potential security violations. | preserved. O.AUDIT ensures that accurate timestamps are provided for all audit records,                                                                                                                                                            |
|                                                                                                                                            | O.AUTHENTICATE<br>The TOE must be able to identify and<br>authenticate users prior to allowing access to<br>TOE administrative functions and TSF data.                                                                                                                                                                                                       | O.AUTHENTICATE counters this threat by<br>ensuring that a user or administrator is properly<br>identified, thereby allowing the TSF to record<br>the user's identity for any logs created as a<br>result of the user's or administrator's actions. |
|                                                                                                                                            | OE.AUDIT<br>The TOE environment must audit the shutdown<br>of CryptoFlow Net Creator, which is linked to<br>the CryptoFlow Net Creator audit function.                                                                                                                                                                                                       | OE.AUDIT counters this threat by ensuring that<br>the shutdown of the CryptoFlow Net Creator<br>audit function is captured and preserved by the<br>TOE environment.                                                                                |
| T.SPOOF<br>An unauthorized person may attempt<br>to impersonate the identity (IP<br>address) of a trusted system.                          | O.INTEGRITY<br>The TOE must provide mechanisms to ensure<br>that any attempt to corrupt or modify an IP<br>packet or Ethernet frame flow transmitted to or<br>from the TOE will be detected.                                                                                                                                                                 | O.INTEGRITY counters this threat by guaranteeing the integrity of communications with the TOE. Any attempt to spoof the TOE will be detected by invalid results of integrity checks.                                                               |
|                                                                                                                                            | O.SECURE_COMM<br>The TOE shall securely transfer data between a<br>CEP device and a remote user, CryptoFlow Net<br>Creator, or another CEP device and between<br>CryptoFlow Net Creator and a remote user.                                                                                                                                                   |                                                                                                                                                                                                                                                    |
| T.UNATH<br>An unauthorized person may gain<br>access to the TOE and compromise its<br>security functions by changing its<br>configuration. | O.ADMIN<br>The TOE must include a set of functions that<br>allow efficient management of its functions,<br>security attributes, and TSF data, ensuring that<br>only authorized TOE administrators (in defined<br>roles) may exercise such control.                                                                                                           |                                                                                                                                                                                                                                                    |
|                                                                                                                                            | O.AUDIT<br>The TOE must record security relevant events<br>with accurate dates and timestamps, associate<br>each event with the identity of the user that<br>caused the event, and provide authorized<br>administrators with the ability to review the<br>audit trail. The TOE shall send an alert email<br>upon detection of potential security violations. |                                                                                                                                                                                                                                                    |
|                                                                                                                                            | O.AUTHENTICATE<br>The TOE must be able to identify and<br>authenticate users prior to allowing access to<br>TOE administrative functions and TSF data.                                                                                                                                                                                                       | O.AUTHENTICATE counters this threat by<br>ensuring that users are identified and<br>authenticated prior to gaining access to TOE<br>security data.                                                                                                 |

©2019 Certes Networks, Inc.

| Threats | Objectives | Rationale                                                                                                                |
|---------|------------|--------------------------------------------------------------------------------------------------------------------------|
|         |            | O.PROTECT counters this threat by ensuring<br>that a login banner is displayed regarding<br>unauthorized use of the TOE. |

Every threat is mapped to one or more objectives in the table above. This complete mapping demonstrates that the defined security objectives counter all defined threats.

### 8.2.2 Security Objectives Rationale Relating to Policies

There are no OSPs for this ST.

## 8.2.3 Security Objectives Rationale Relating to Assumptions

Table 23 below gives a mapping of assumptions and the environmental objectives that uphold them.

### Assumptions Objectives Rationale A.INSTALL OE.TRUSTED ADMIN OE.TRUSTED ADMIN upholds this assumption The TOE is installed on Those responsible for the management and by ensuring that the TOE administrators read the appropriate, dedicated hardware and configuration of the TOE must be trusted and and follow the guidance for installation and operating system. adequately trained to perform their functions. deployment of the TOE. OE.TRAFFIC upholds this assumption by A.NETCON OE.TRAFFIC The TOE environment provides the The TOE environment must be implemented ensuring that the environment provides the network connectivity required to allow such that the TOE is appropriately located with TOE the appropriate network the TOE to perform its intended within the network to perform its intended configuration. functions. function. A.TIMESTAMP **OE.TIMESTAMP** OE.TIMESTAMP upholds this assumption by provides NTP servers providing time information to the ensuring that NTP servers providing timestamps The IT environment are on the local network and in-accessible to CryptoFlow Net Creator with the TOE shall be on the local network and inaccessible to non-administrators. non-administrators. necessary reliable timestamps. **OE.PHYSICAL** A.LOCATE OE.PHYCAL upholds this assumption by The TOE, management network, Those responsible for the physical security of ensuring that the environment provides CryptoFlow Net Creator hardware the TOE must ensure that the TOE is protected protection against physical attack. platform, and NTP and syslog servers from physical attack. are all located within a controlled **OE.SECURE NETWORK OE.SECURE NETWORK upholds this assumption** access facility behind a secured The LAN that the CEP, CryptoFlow Net Creator by ensuring that the TOE and TOE network. hardware platform, management workstation, environmental components connected to the and TOE environmental components are LAN are protected from outside attacks. connected to is a secure network that provides protection against outside attacks.

### Table 23 – Assumptions: Objectives Mapping

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

©2019 Certes Networks, Inc.

| Assumptions                                                                                                                                  | Objectives                                                                                                                                                     | Rationale                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A.MANAGE<br>There are one or more competent<br>individuals assigned to manage the<br>TOE and the security of the<br>information it contains. |                                                                                                                                                                |                                                                                                                                                                                                                                          |
| A.NOEVIL<br>The users who manage the TOE are<br>non-hostile, appropriately trained, and<br>follow all guidance.                              | OE.TRUSTED_ADMIN<br>Those responsible for the management and<br>configuration of the TOE must be trusted and<br>adequately trained to perform their functions. | OE.TRUSTED_ADMIN upholds this assumption<br>by ensuring that all administrators assigned to<br>manage the TOE are not careless, negligent, or<br>willfully hostile; are appropriately trained; and<br>follow all administrator guidance. |
| shutdown of the CryptoFlow Net                                                                                                               | OE.AUDIT<br>The TOE environment must audit the shutdown<br>of CryptoFlow Net Creator, which is linked to<br>the CryptoFlow Net Creator audit function.         |                                                                                                                                                                                                                                          |
| A.PROTECT<br>The TOE software will be protected<br>from unauthorized modification.                                                           | OE.PROTECT<br>The TOE environment must protect itself and<br>the TOE from external interference or<br>tampering.                                               |                                                                                                                                                                                                                                          |

Every assumption is mapped to one or more objectives in the table above. This complete mapping demonstrates that the defined security objectives uphold all defined assumptions.

### 8.3 Rationale for Extended Security Functional Requirements

There are no extended functional requirements defined for this TOE.

## 8.4 Rationale for Extended TOE Security Assurance Requirements

There are no extended assurance requirements defined for this TOE.

### 8.5 Security Requirements Rationale

The following discussion provides detailed evidence of coverage for each security objective.

### 8.5.1 Rationale for Security Functional Requirements of the TOE Objectives

Table 24 below shows a mapping of the objectives and the SFRs that support them.

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

| Table 24 - | <b>Objectives:</b> | SFRs | Mapping |
|------------|--------------------|------|---------|
|------------|--------------------|------|---------|

| Objective                                                                                                                                                                                                                                                                                                                                                          | Requirements Addressing the Objective              | Rationale                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O.ADMIN<br>The TOE must include a set of<br>functions that allow efficient                                                                                                                                                                                                                                                                                         | FIA_SOS.1<br>Verification of secrets               | This requirement meets the objective by ensuring that the authentication process meets the password requirements of the TOE.                                              |
| management of its functions, security<br>attributes, and TSF data, ensuring that<br>only authorized TOE administrators (in<br>defined roles) may exercise such<br>control.                                                                                                                                                                                         | FIA_UAU.2<br>User authentication before any action | This requirement meets the objective by requiring all TOE administrators to authenticate before any other TSF-mediated actions are performed.                             |
|                                                                                                                                                                                                                                                                                                                                                                    | FIA_UID.2<br>User identification before any action | This requirement meets the objective by requiring all TOE administrators to identify before any other TSF-mediated actions are performed.                                 |
|                                                                                                                                                                                                                                                                                                                                                                    | FMT_MSA.1<br>Management of security attributes     | This requirement meets the objective by allowing authorized TOE administrators to manage the TOE security attributes.                                                     |
|                                                                                                                                                                                                                                                                                                                                                                    | FMT_MSA.3<br>Static attribute initialisation       | The requirement meets the objective by<br>ensuring that the TOE restricts administrative<br>functions to only those users with the<br>appropriate privileges.             |
|                                                                                                                                                                                                                                                                                                                                                                    | FMT_MTD.1<br>Management of TSF data                | This requirement meets the objective by ensuring that the TOE restricts access to TSF data based on the user's role.                                                      |
|                                                                                                                                                                                                                                                                                                                                                                    | FMT_SMF.1<br>Specification of management functions | This requirement meets the objective by ensuring that the TOE includes administrative functions to facilitate the management of the TSF.                                  |
|                                                                                                                                                                                                                                                                                                                                                                    | FMT_SMR.1<br>Security roles                        | This requirement meets the objective by<br>ensuring that the TOE associates users with<br>roles to provide access to TSF management<br>functions and data.                |
| O.AUDIT<br>The TOE must record security relevant<br>events with accurate dates and<br>timestamps, associate each event with<br>the identity of the user that caused the<br>event, and provide authorized<br>administrators with the ability to<br>review the audit trail. The TOE shall<br>send an alert email upon detection of<br>potential security violations. | FAU_ARP.1<br>Security alarms                       | The requirement meets this objective by ensuring that the TOE sends email alerts for potential security violations.                                                       |
|                                                                                                                                                                                                                                                                                                                                                                    | FAU_GEN.1<br>Audit Data Generation                 | This requirement meets the objective by<br>ensuring that the TOE maintains a record of<br>defined security related events, including<br>relevant details about the event. |
|                                                                                                                                                                                                                                                                                                                                                                    | FAU_GEN.2<br>User Identity Association             | The requirement meets the objective by identifying the users that perform functions resulting in audit records.                                                           |
|                                                                                                                                                                                                                                                                                                                                                                    | FAU_SAA.1<br>Potential violation analysis          | The requirement meets the objective by identifying potential security violations that result in email alerts.                                                             |
|                                                                                                                                                                                                                                                                                                                                                                    | FAU_SAR.1<br>Audit review                          | The requirement meets the objective by ensure that the TOE provides the ability to review logs.                                                                           |

### Security Target, Version 0.7

| Objective                                                                                                                                                                                                                                                    | Requirements Addressing the Objective              | Rationale                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                              | FPT_STM.1<br>Reliable time stamps                  | This requirement meets the objective by<br>ensuring that the TOE can provide reliable<br>timestamps. The timestamps allow the TOE to<br>place events in the order that they occurred.                                                                                                                                                                                    |
| O.AUTHENTICATE<br>The TOE must be able to identify and<br>authenticate users prior to allowing                                                                                                                                                               | FIA_SOS.1<br>Verification of secrets               | This requirement meets the objective by ensuring that the authentication process meets the password requirements of the TOE.                                                                                                                                                                                                                                             |
| access to TOE administrative functions and TSF data.                                                                                                                                                                                                         | FIA_UAU.2<br>User authentication before any action | This requirement meets the objective by requiring all TOE administrators to authenticate before any other TSF-mediated actions are performed.                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                              | FIA_UAU.7<br>Protected authentication feedback     | The requirement meets the objective by obscuring feedback through CryptoFlow Net Creator and the CEP CLI during authentication.                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                              | FIA_UID.2<br>User identification before any action | This requirement meets the objective by requiring all TOE administrators to identify before any other TSF-mediated actions are performed.                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                              | FMT_MTD.1<br>Management of TSF data                | This requirement meets the objective by<br>ensuring that only authorized users are allowed<br>access to TSF data, including authentication<br>data.                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                              | FTA_SSL.3<br>TSF-initiated termination             | This requirement meets the objective by<br>ensuring that the TOE users are logged off after<br>an administrator-defined period of inactivity,<br>ensuring that unauthenticated entities do not<br>gain access to the TOE through an unattended<br>session. This ensures that unauthenticated<br>users do not hijack an authorized<br>administrator's unattended session. |
|                                                                                                                                                                                                                                                              | FTA_SSL.4<br>User-initiated termination            | This requirement meets the objective by<br>providing a means for TOE users to log off to<br>terminate their sessions, ensuring that<br>unauthenticated entities do not gain access to<br>the TOE through an unattended session. This<br>ensures that unauthenticated users do not<br>hijack an authorized administrator's unattended<br>session.                         |
| O.ENCRYPT<br>The TOE must provide the means of<br>protecting the confidentiality of<br>information transferred across a public<br>network between two protected<br>networks using cryptography that<br>conforms to standards specified in FIPS<br>PUB 140-2. | FCS_CKM.1<br>Cryptographic key generation          | This requirement meets the objective by ensuring that the cryptographic keys are generated according to an assigned standard.                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                              | FCS_CKM.2<br>Cryptographic key agreement           | This requirement meets the objective by ensuring that key agreement is performed according to defined standards.                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                              | FCS_CKM.4<br>Cryptographic key destruction         | This requirement meets the objective by<br>ensuring that the cryptographic keys are<br>destroyed according to FIPS 140-2 zeroization<br>requirements.                                                                                                                                                                                                                    |

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

| Objective                                                                                                                                                                                       | Requirements Addressing the Objective            | Rationale                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                 | FCS_COP.1<br>Cryptographic operation             | This requirement meets the objective by<br>ensuring that the cryptographic operations are<br>performed according to the specified<br>algorithms with the specified key sizes.                                                                                                                                                                                                                  |
|                                                                                                                                                                                                 | FDP_IFC.1<br>Subset information flow control     | This requirement meets the objective by defining the types of subjects, information, and operations for the Information Flow Control SFP that is applied to traffic flowing through the TOE.                                                                                                                                                                                                   |
|                                                                                                                                                                                                 | FDP_IFF.1<br>Simple security attributes          | This requirement meets the objective by defining a list of attributes of subjects and information for the Informational Flow Control SFP that is applied to traffic flowing through the TOE.                                                                                                                                                                                                   |
|                                                                                                                                                                                                 | FDP_UCT.1<br>Basic data exchange confidentiality | This requirement meets the objective by ensuring that the traffic flowing through the TOE is protected from unauthorized disclosure.                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                 | FMT_MSA.3<br>Static attribute initialisation     | This requirement supports the objective by<br>specifying that the Informational Flow Control<br>policy shall be applied permissively to traffic<br>flowing through the TOE. This means that the IP<br>packets or Ethernet frames are sent<br>unencrypted by default. Authorized<br>administrators can modify the default values to<br>ensure that some or all traffic is decrypted<br>instead. |
|                                                                                                                                                                                                 | FTP_ITC.1<br>Inter-TSF trusted channel           | This requirement meets the objective by<br>ensuring that any information exchange<br>between the TOE and another trusted IT<br>product happens over a trusted channel.                                                                                                                                                                                                                         |
| O.INTEGRITY<br>The TOE must provide mechanisms to<br>ensure that any attempt to corrupt or<br>modify an IP packet or Ethernet frame<br>flow transmitted to or from the TOE<br>will be detected. | FCS_COP.1<br>Cryptographic operation             | This requirement meets the objective by<br>ensuring that the cryptographic operations are<br>performed according to the specified<br>algorithms with the specified key sizes.                                                                                                                                                                                                                  |
|                                                                                                                                                                                                 | FDP_UIT.1<br>Data exchange integrity             | This requirement meets the objective by<br>ensuring that the traffic flowing through the<br>TOE is protected from modification and<br>insertion errors.                                                                                                                                                                                                                                        |
| O.KEYMAN<br>The TOE must provide the means for<br>secure management of cryptographic<br>keys. This includes establishment,<br>generation, encryption, and<br>destruction of the keys.           | FCS_CKM.1<br>Cryptographic key generation        | This requirement meets the objective by<br>ensuring that the cryptographic keys are<br>generated according to an assigned standard.                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                 | FCS_CKM.2<br>Cryptographic key agreement         | This requirement meets the objective by ensuring that key agreement is performed according to defined standards.                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                 | FCS_CKM.4<br>Cryptographic key destruction       | This requirement meets the objective by<br>ensuring that the cryptographic keys are<br>destroyed according to FIPS 140-2 zeroization<br>requirements.                                                                                                                                                                                                                                          |

| Objective                                                                                                                                                                                                        | Requirements Addressing the Objective                    | Rationale                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                  | FCS_COP.1<br>Cryptographic operation                     | This requirement meets the objective by<br>ensuring that the cryptographic operations are<br>performed according to the specified<br>algorithms with the specified key sizes. |
| O.PROTECT<br>The TOE must ensure the integrity of<br>system data by protecting itself from<br>unauthorized modifications and access<br>to its functions and data.                                                | FTA_TAB.1<br>Default TOE access banners                  | This requirement meets the objective by displaying an advisory warning message regarding unauthorized use of the TOE.                                                         |
| O.SECURE_COMM<br>The TOE shall securely transfer data<br>between a CEP device and a remote<br>user, CryptoFlow Net Creator, or<br>another CEP device and between<br>CryptoFlow Net Creator and a remote<br>user. | FPT_ITT.1<br>Basic internal TSF data transfer protection | This requirement meets the objective by<br>ensuring that TSF data transmitted between the<br>CryptoFlow Net Creator and a CEP device or<br>between CEP devices is protected.  |
|                                                                                                                                                                                                                  | FTP_ITC.1<br>Inter-TSF trusted channel                   | This requirement meets the objective by providing a trusted channel for the transfer of user data between CEP devices.                                                        |
|                                                                                                                                                                                                                  | FTP_TRP.1<br>Trusted path                                | This requirement meets the objective by protecting the communication path to remote users of CryptoFlow Net Creator and the CEP CLI.                                          |

### 8.5.2 Security Assurance Requirements Rationale

EAL4+ was chosen because it is best suited to address the stated security objectives. EAL4+ challenges vendors to use best (rather than average) commercial practices. EAL4+ allows the vendor to evaluate their product at a detailed level while benefitting from the Common Criteria Recognition Agreement. The chosen assurance level is appropriate for the threats defined in the environment. At EAL4+, penetration testing is performed by the evaluator assuming an attack potential of Enhanced-Basic.

The augmentation of ALC\_FLR.3 was chosen to give greater assurance of the developer's on-going flaw remediation processes.

### 8.5.3 Dependency Rationale

The SFRs in this ST satisfy all of the required dependencies listed in the Common Criteria and SFRs explicitly stated in this ST. Table 25 lists each requirement to which the TOE claims conformance and indicates whether the dependent requirements are included. As the table indicates, all dependencies have been met.

| SFR ID    | Dependencies | Dependency Met | Rationale |
|-----------|--------------|----------------|-----------|
| FAU_ARP.1 | FAU_SAA.1    | ✓              |           |
| FAU_GEN.1 | FPT_STM.1    | ✓              |           |
| FAU_GEN.2 | FAU_GEN.1    | ✓              |           |
|           | FIA_UID.1    | ✓              |           |

### Table 25 – Functional Requirements Dependencies

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

| SFR ID    | Dependencies    | Dependency Met        | Rationale                                                                                                                       |
|-----------|-----------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------|
| FAU_SAA.1 | FAU_GEN.1       | <b>√</b>              |                                                                                                                                 |
| FAU_SAR.1 | FAU_GEN.1       | ✓                     |                                                                                                                                 |
| FCS_CKM.1 | FCS_CKM.4       | ✓                     |                                                                                                                                 |
|           | FCS_COP.1       | ×                     |                                                                                                                                 |
| FCS_CKM.2 | FCS_CKM.4       | ✓                     |                                                                                                                                 |
|           | FCS_CKM.1       | ✓                     |                                                                                                                                 |
| FCS_CKM.4 | FCS_CKM.1       | ✓                     |                                                                                                                                 |
| FCS_COP.1 | FCS_CKM.4       | ✓                     |                                                                                                                                 |
|           | FCS_CKM.1       | ✓                     |                                                                                                                                 |
| FDP_IFC.1 | FDP_IFF.1       | ✓                     |                                                                                                                                 |
| FDP_IFF.1 | FDP_IFC.1       | ×                     |                                                                                                                                 |
|           | FMT_MSA.3       | ×                     |                                                                                                                                 |
| FDP_UCT.1 | FDP_IFC.1       | ✓                     |                                                                                                                                 |
|           | FTP_ITC.1       | <ul> <li>✓</li> </ul> |                                                                                                                                 |
| FDP_UIT.1 | FDP_IFC.1       | ✓                     |                                                                                                                                 |
|           | FTP_ITC.1       | <ul> <li>✓</li> </ul> |                                                                                                                                 |
| FIA_SOS.1 | No dependencies | ✓                     |                                                                                                                                 |
| FIA_UAU.2 | FIA_UID.1       | ✓                     | Although FIA_UID.1 is not included, FIA_UID.2, which is hierarchical to FIA_UID.1, is included. This satisfies this dependency. |
| FIA_UAU.7 | FIA_UAU.1       | ✓                     | Although FIA_UAU.1 is not included, FIA_UAU.2, which is hierarchical to FIA_UAU.1, is included. This satisfies this dependency. |
| FIA_UID.2 | No dependencies | ×                     |                                                                                                                                 |
| FMT_MSA.1 | FDP_IFC.1       | ×                     |                                                                                                                                 |
|           | FMT_SMF.1       | ✓                     |                                                                                                                                 |
|           | FMT_SMR.1       | ✓                     |                                                                                                                                 |
| FMT_MSA.3 | FMT_MSA.1       | ✓                     |                                                                                                                                 |
|           | FMT_SMR.1       | <ul> <li>✓</li> </ul> |                                                                                                                                 |
| FMT_MTD.1 | FMT_SMF.1       | ✓                     |                                                                                                                                 |
|           | FMT_SMR.1       | ✓                     |                                                                                                                                 |
| FMT_SMF.1 | No dependencies | $\checkmark$          |                                                                                                                                 |
| FMT_SMR.1 | FIA_UID.1       | ✓                     | Although FIA_UID.1 is not included, FIA_UID.2, which is hierarchical to FIA_UID.1, is included. This satisfies this dependency. |
| FPT_ITT.1 | No dependencies | ✓                     |                                                                                                                                 |
| FPT_STM.1 | No dependencies | ✓                     |                                                                                                                                 |
| FTA_SSL.3 | No dependencies | ✓                     |                                                                                                                                 |
| FTA_SSL.4 | No dependencies | ✓                     |                                                                                                                                 |

| SFR ID    | Dependencies    | Dependency Met | Rationale |
|-----------|-----------------|----------------|-----------|
| FTA_TAB.1 | No dependencies | ✓              |           |
| FTP_ITC.1 | No dependencies | ✓              |           |
| FTP_TRP.1 | No dependencies | ✓              |           |

# 9. Acronyms

Table 26 defines the acronyms used throughout this document.

| Acronym | Definition                              |
|---------|-----------------------------------------|
| AES     | Advanced Encryption Standard            |
| ANSI    | American National Standards Institute   |
| CA      | Certificate Authority                   |
| СВС     | Cipher Block Chaining                   |
| СС      | Common Criteria                         |
| СЕР     | Certes Enforcement Point                |
| CLI     | Command Line Interface                  |
| СМ      | Configuration Management                |
| CoS     | Class of Service                        |
| CPU     | Central Processing Unit                 |
| CRC     | Cyclic Redundancy Check                 |
| CTR     | Counter                                 |
| DES     | Data Encryption Standard                |
| DSA     | Digital Signature Algorithm             |
| EAL     | Evaluation Assurance Level              |
| ESP     | Encapsulating Security Payload          |
| FIPS    | Federal Information Processing Standard |
| GB      | Gigabyte                                |
| Gbps    | Gigabits per second                     |
| GHz     | Gigahertz                               |
| GCM     | Galois Counter Mode                     |
| GUI     | Graphical User Interface                |
| HMAC    | Hash Message Authentication Code        |
| HSM     | Hardware Security Module                |
| HTTPS   | Hyper Text Transfer Protocol Secure     |
| ID      | Identifier                              |
| IKE     | Internet Key Exchange                   |
| IP      | Internet Protocol                       |
| IPSec   | IP Security Protocol                    |

Table 26 – Acronyms

Certes CryptoFlow Net Creator v5.3 Software with CEP220, CEP250, CEP300, CEP420, and CEP520 running CEP v5.3 Firmware v5.3

| Acronym | Definition                                       |
|---------|--------------------------------------------------|
| IT      | Information Technology                           |
| LAN     | Local-Area Network                               |
| MAC     | Message Authentication Code                      |
| Mbps    | Megabits per second                              |
| MPLS    | Multiprotocol Label Switching                    |
| NTP     | Network Time Protocol                            |
| PUB     | Publication                                      |
| OS      | Operating System                                 |
| OSP     | Organizational Security Policy                   |
| PMTU    | Path Maximum Transmission Unit                   |
| РР      | Protection Profile                               |
| RSA     | Rivest-Shamir-Adleman                            |
| RNG     | Random Number Generator                          |
| SA      | Security Association                             |
| SAD     | Security Association Database                    |
| SAR     | Security Assurance Requirement                   |
| SFP     | Security Function Policy                         |
| SFR     | Security Functional Requirement                  |
| SHA-1   | Secure Hash Algorithm 1                          |
| SNMP    | Simple Network Management Protocol               |
| SPD     | Security Policy Database                         |
| SSH     | Secure Shell                                     |
| ST      | Security Target                                  |
| ТСР     | Transmission Control Protocol                    |
| TLS     | Transport Layer Security                         |
| TOE     | Target of Evaluation                             |
| TSF     | TOE Security Functionality                       |
| UDP     | User Datagram Protocol                           |
| VLAN    | Virtual Local Area Network                       |
| VM      | Virtual Machine                                  |
| WAN     | Wide Area Network                                |
| XML-RPC | Extensible Markup Language Remote Procedure Call |

Prepared by: Corsec Security, Inc.



13921 Park Center Road, Suite 460 Herndon, VA 20171 United States of America

> Phone: +1 703 267 6050 Email: <u>info@corsec.com</u> <u>http://www.corsec.com</u>