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1 Introduction

This document is a security target that defines the assets, threats, security assumptions, security functional requirements,
security assurance requirements and rationale for the IBM Enterprise PKCS#11 firmware resident within IBM hardware
security modules (HSMs) of model 4768. This is version 1 of the security target, last updated 2019-03-20 20:59:40 (UTC),
file revision 288. The security target corresponds to the shortened EP11 version identified as 2b638e8e.

See section 8.1 for the description of full module configurations.

1.1 Security Target introduction

The IBM Enterprise PKCS#11 firmware (EP11) is an implementation of the industry-standard PKCS#11 cryptographic
service provider API version v2.20 [PKC04] and some algorithmic extensions [PKC09, PKC14], adapted to requirements
typical in enterprise servers. The EP11 firmware provides a stateless backend, relying mainly on host-resident, encrypted
datastores to maintain sensitive state [VDO14], while presenting services as a regular HSM-based PKCS#11 implementation.
When loaded as an application within suitable IBM HSMs, EP11 firmware provides a set of cryptographic services functionally
identical to those specified by PKCS#11 with minimal host-library assistance.

Extended capabilities provided by hosting HSMs are either transparent to PKCS#11 applications, or are presented through
implementation-specific additions through standard PKCS#11 extension interfaces. In addition to services derived from
PKCS+#11, the TOE provides an additional set of administrative services for management of keys, attributes, usage restric-
tions, and infrastructure — at a level more privileged than Security Officers of PKCS+#11.

The TOE scope excludes host code, including drivers translating between PKCS#11 and EP11 interfaces. These transforma-
tions simply move traffic between serialization formats, and do not provide cryptographic or security-relevant functionality.

1.2 TOE type

The TOE represents the full firmware stack as loaded into an applicable HSM, inheriting any physical protection as an
environmental feature afforded by code instantiated within HSM boundaries. Note: the TOE implements functions for
physical protection which have not been subject to this evaluation.

The functionality includes cryptographic engines — see section 1.4.5.

In this instantiation, the TOE is categorized as a “Cryptographic Module” assuming dedicated physical protection from
the hosting infrastructure — implying operations in an access-controlled, physically protected environment.

The TOE includes services like the update of software that are restricted to administrative users. The assumption is made
that those services are not used by such a user.

While we describe multiple hardware configurations, the PKCS+#11-level EP11 firmware functionality is identical. Differences
in the underlying infrastructure are known only to some engine-aware code, the only entity aware of details of internal
functions.

1.3 TOE usage and major security features
The TOE, in the context of this security target, provides the following security features:

e Generation and distribution of cryptographic keys, including controlled import and export capabilities.

Note that most uses of “export” in EP11 are not for transport to other cards. Objects or state stored on the host is
expected to be retrieved by another EP11 module, possibly the originating one. This export from an HSM does not
constitute “export” in the PKCS+#11 sense — i.e., WrapKey () encrypting a key with another user-controlled one.

e A compliant implementation of most PKCS#11 security functions — “functional calls” — with minor adaptations
unique to the hardware/software components of the TOE (section 8.2).

Note that a fully transparent implementation of PKCS#11 also requires modest additional work transforming calls on
the host, which is not further discussed in the context of the TOE. These additional steps simply de/serialize data
without performing cryptographic operations.

e Secure storage and management of cryptographic keys during their HSM-internal lifecycle.

While key-lifecycle management includes tracking and logical state of each key, it specifically lacks expiration based
on time. While TOE environment contains an internal real-time clock, time-based expiration is not currently tracked.
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The essentially-stateless operational model of enterprise keystores implies that per-module key expiration is of limited
value (expiration SHOULD happen consistently at the host level, not within multiple, uncoordinated HSMs).

e Secure management of key attributes, including association with keys, and restrictions on usage of keys.

e Creation and verification of encrypted and authenticated — “wrapped” — enclosures for sensitive data (“blobs") to
be stored on untrusted hosts

e Creation, management, and lifecycle control of “wrapping keys,” (WKs) top-level symmetric keys encrypting host-
resident sensitive data. Maintenance of authentication — MAC — keys corresponding to each active WK.

e Random-number generation, supplying an internally generated bitstream intended for cryptographic purposes.
e Internal maintenance and separation of multiple “domains” (partitions)
e Internal maintenance and separation of user “sessions”

e Management of external administrator identities — i.e., public keys — of privileged operators authorized to modify
security attributes beyond those accessible to PKCS#11 security officers.

e Secure management of administrative and usage-control attributes.

e Communication of audit-relevant events to host, as input to system-wide audit facilities. HSM-resident mainte-
nance of certain audit-relevant features, for lower-assurance audit events where complete loss through tamper-induced
destruction — which is an asynchronous, uncontrolled event — of such events is acceptable.

e Consistency-checking and other error checking of underlying crypto service provider functionality, including implicit
coverage of any cryptographic hardware engines, through a dedicated set of tests

The TOE is implicitly influenced by any key-destruction initiated by the underlying tamper-detection mechanisms in hard-
ware, both terminal (“hard tamper”) and recoverable (“soft tamper”) events. Depending on event type, the TOE may or
may not be an active participant in event reactions. Specifically, tamper-induced zeroization of sensitive data within IBM
HSMs is performed entirely by hardware, without firmware assistance or even cooperation.

1.4 TOE description
1.4.1 Physical scope of TOE

The TOE is the full firmware stack of the HSM plus algorithms implemented in an ASIC and FPGA that are used within
the TOE. Physical instantiation, tamper response and other infrastructure circuitry are functions of the HSM enclosure (the
latter as part of the TOE environment).

The externally observable interface of the physical instantiation is the external industry-standard PCle bus. Note that in
the claimed operational environment of the TOE the PCle bus interface is not directly accessible by anybody. Access to the
TOE is restricted to access by the zSeries functions.

TOE services are available as a typical request-response control/dataflow through the hosting HSM, providing responses
to host-initiated requests. In addition to matched pairs of requests and responses, the backing HSM may generate traffic
asynchronously, such as providing diagnostics.

The TOE is identified by the respective firmware identifier for the 4768 as provided in section 8.1 “Specification of full TOE
configuration” of this document.

1.4.2 Logical scope of TOE

The logical scope includes TOE firmware, including the EP11 application, cryptographic service provider and HSM-internal
configuration data. These components are stored in HSM-internal storage, or within ASIC/FPGA in their entirety, in a
combination of persistent code and data storage. During servicing requests, the TOE may access request-integrated copies
of key material inserted by the host, copies of which are then under control of the TOE.

Code within the appropriate IBM HSMs (4768) is field-upgradeable, without cooperation of any previously loaded ap-
plications, by the underlying system firmware — “Segment 1", specifically “Miniboot”, in IBM HSM terminology. The
operating system or applications, including all components of EP11, are incapable of updating code. Firmware updates need
to be digitally signed; the TOE verifies the correctness of signatures before updates. Update functionality is not within the
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scope of this evaluation — except for verifying that an invalid signature on downloaded code updates is detected by the
TOE and the installation of the software update is rejected.

The HSM-instantiated form of EP11 consists of the following groups of functionality:

1. Core EP11 functionality, implementing our documented PKCS#11-like services: the equivalents of PKCS#11 com-
mands, queries, or other administrative functionality.

2. Cryptographic provider, providing cryptographic services, and abstracting away the specifics of HSM engine access.
Note that the cryptographic provider of Enterprise PKCS#11 is an HSM-specific instance of CryptoLite for C (Clic),
the official OS crypto service provider of most IBM Systems Group (i.e., server) operating systems.

In IBM HSMs, the Clic instance is optimized for PowerPC processors, and utilizes hardware-based acceleration for
applicable HSM engines, with an external API identical to that of software-based versions.

3. Cryptographic engines provided by the hosting HSM, used by the cryptographic provider (this is opaque to the EP11
core)

4. Random-number generation, supplying an entirely internally generated, hardware-originating stream, conditioned, and
post-processed within the enclosure.

Note that the physical noise source used to seed the random number generator is not part of the TOE but part of
the TOE environment.

5. Infrastructure interaction, including reaction to HSM-provided events, request/response channel management, and
other external entities unique to hosting HSMs

6. Dispatcher and thread management, the top-level entity reacting to host-initiated traffic (requests) and submitting
responses through infrastructure-provided channels

7. A number of processing threads, each servicing requests assigned by the top-level dispatcher.

Request processing includes both services derived from PKCS#11 functional calls, administrative queries or commands.

8. Audit infrastructure, constructing an unmalleable, hash-chain-based sequence of audit events, logging security-relevant
EP11 events.

9. Other infrastructure software, such as self-test routines and firmware assisting startup (Fig. 1)

(a) Power-on selftest (POST) code integrity-checking infrastructure, in multiple levels, gradually increasing coverage
(b) Bootstrap control (Miniboot0). This code is ROMmed, not modifiable.

(c) Security-state management (Minibootl), including integrity-checking loaded firmware. Other functionality, as
described detail below, is dormant in the evaluated configuration.

See section 1.4.4 for more detail of this segmentation.

The list of features specifically excludes firmware-update capability during TOE operations. For practical purposes, IBM
HSMs are non-modifiable runtimes during EP11 operations — even if firmware may be updated, but only as an offline
operation. In the configuration described by this Security Target, we assume that HSM infrastructure services are unchanged,
and no code update happens during the operation of EP11 firmware. (As a consequence of this limitation, we prohibit
Miniboot services from executing any commands changing Miniboot-state. Note that such firmware updates would happen
outside the scope of EP11 itself; we in fact impose this restriction on HSM infrastructure.)

Access to TOE services is provided over the PCl Express (PCle) bus, submitted as selfcontained requests serializing request
parameters, prefixed by transport headers. The interface of the request/response flow is fully documented through an
implementation-neutral, standardized interface, in a dedicated “wire specification”, which completely specifies formats and
de/serialization rules for all traffic observable at the PCle bus.

The TOE treats all host-originated data, including full serialized structures and its embedded components, as untrusted.
Denial-of-service attacks on the host or its |/O infrastructure, preventing access to the TOE or corrupting requests, are not
considered: they prevent proper requests from reaching the TOE but they MAY NOT be detected /protected against by the
TOE.

The TOE provides the following main categories of security functions:

Encryption, decryption, authentication, management of host-resident, sensitive, host-opaque objects as the step re-
quired to retrieve keys from requests

This category involves creation and incremental maintenance of any host-opaque, exported objects.
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Figure 1: Module software architecture

Generation, distribution of cryptographic keys including controlled import and export capabilities

Random-number generation supplying an entirely internally generated, hardware-originating stream, conditioned, and
post-processed within the enclosure. The random-number generator may provide bytes to the host, or use them
directly to generate cryptographic keys within the TOE.

Functional calls implementing the EP11 equivalents of PKCS#11 cryptographic services

Secure storage of HSM-resident keys if they are committed from host-resident to HSM-internal form (“semi-retained”
keys). Once retained, these keys are referenced through handles and not available for subsequent export, but may be
used by functional calls, or removed.

User authentication through session management, for functional calls, corresponding to PKCS#11 Login and Logout
services in a way consistent with TOE assumptions
Administrator authentication through public-key signatures, for administrative services (no PKCS#11 equivalent)

Note that state-changing administrative services — administrative commands — are authenticated by external entities,
and the TOE only verifies signatures on such authenticated data. Actual sensitive operations — signature generation
— happen outside the TOE.

Administrative services, operations outside PKCS#11 scope. Generally, these services operate at higher privilege levels
than any PKCS#11 operation, even if several of them interact with PKCS#11-visible objects.

Administrative services includes the following:

1. Creation and management of WKs
2. Transportation of card state

3. Management of administrative usage-control attributes, including restrictions based on key strength, key type,
usage scenario, and other limitations on functionality. Restrictions are further subdivided into module- and
domain-level attributes, with well-defined precedence rules for checking and enforcement.

Functional access control combining usage restrictions from generic administrative settings, “control points” of domains,
and usage controls embedded into wrapped objects. These usage restrictions may interact with PKCS#11 capabilities,
but have no equivalent PKCS#11 counterpart.

The TOE ensures separation between domains and between sessions. Separation between domains is achieved with
domain-specific wrapping keys.

Administrative access control combining statically defined or attribute-dependent usage and access restrictions for HSM-
resident state

Auditing supplying host-visible audit events, and short-term low-assurance events within the HSM

Self-tests verifying the integrity of HSM components, including the cryptographic provider and implicitly any hardware
accelerators
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Figure 2: Module hardware architecture, with directly connected components on the hosting PCle board (when deployed on
an HSM)

1.4.3 Externally observable TOE functionality levels
TOE functionality forms clearly disjoint, hierarchical sets of services. In decreasing order of capabilities, the following
categories of services are available:

1. Module-level administrative services, capable of managing properties of the entire module. In addition to maintenance
of the most privileged, module-level settings, module administrators mainly manage the identities of lower-level —
i.e., domain — administrators (section 7.1.7).

Module administrators have no PKCS#11 equivalent, and are not expected to submit functional, non-administrative
requests to the TOE. In a typical production setup, module administrators are expected to interact with the module
relatively infrequently.

2. Domain-level administrative services, authorized to manage one particular domain, including PKCS#11-visible at-
tributes within that domain. They are not authorized to influence module-level properties, and multiple sets of them
coexist without the capability to influence other domains.

Domain administrators are not expected to submit functional, non-administrative requests to the TOE.
3. Functional — non-administrative — PKCS#11 services, bound to sessions. These services are influenced by the
administrative setup of the domain hosting them, but they may not change any administrative setting.
Session management may change persistent TOE state — i.e., list of sessions — but not administrative structures.
4. Functional PKCS#11 services using keys, when used without sessions. Services available at this level match those

of session-bound requests, but session-bound objects are rejected and may not be used. (In other words, session-less
objects correspond to PKCS#11 “token objects” — those not bound to any specific PKCS#11 user.)

Functional services in this category may change persistent TOE state — such as cached key entries, or list of semi-
retained keys — but not administrative structures.

5. Functional services requiring no use of keys, such as hashing or random number generation. These services generally
correspond to PKCS#11 ones, particularly those which may require PKCS#11 sessions, but no keys.

Functional services in this category may change persistent TOE state, such as advancing the state of the random-
number generator within the TOE-embedded crypto service provider Key-related or administrative structures are not
accessed.
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6. Queries, incapable of modifying TOE-visible objects.

State-changing administrative actions must be signed by administrator keys (table 5), therefore administrator signing keys
are implicitly trusted as authentication devices, representing the administrator controlling the proper signature key.

The TOE does not distinguish between PKCS#11 security officers and users, as it lacks objects which would reflect that
distinction. Any PKCS#11-level entity is less privileged than administrators.

Note that queries are generally available to any host entity capable of submitting requests to the module. The distinction
between multiple host entities, and access control restricting use of queries, is out of TOE scope.

1.4.4 TOE software architecture

Internal software is divided into four layers. The base two layers, and a stub in the third layer control security and configu-
ration of the module:

e Layer 0: Permanent POST 0 (Power-on Self Test) and Miniboot 0 (security bootstrap). This code is in ROMmed
flash, bootstrapping the entire module, effectively non-modifiable.

e Layer 1: Rewritable POST 1 and Miniboot 1, responsible for self-test and some card-level management functionality.
The upper two layers customize the operation of each individual device.

e Layer 2: System software. Supervisor-level code, including any system-provided device drivers, but excluding the
startup stub.

e Layer 3: Application code, including userspace drivers, if any

1.4.5 Cryptographic engines

The architecture of 4768 modules (Fig. 2) features internal access control between processors and code flash, communication
channels etc. in a programmable environment.

The internal cryptographic engines are the following:

1. TDES
2. AES

w

SHA-1, SHA-224, SHA-256, SHA-384, SHA-512

»

modular mathematics supporting modular multiplication (such as used as primitives of RSA, DSA, DH)
5. EC (elliptic curve) base operations, based on shared modular-math primitives

6. Hardware entropy source [note: conditioning, in both cases, is entirely software-based] [note: the hardware noise
source is part of TOE environment.]

These cryptographic engines are implemented in the Andretta ASIC of the 4768 module; these hardware items are therefore
part of the TOE.

1.5 Non-TOE hardware/software/firmware components

The TOE within its hosting HSM does not exist in isolation; it requires a set of conditions in its operating environment.
Although the CryptoExpress PCle cards can operate on various hardware platforms, this evaluation only considers the IBM
zSeries mainframe platform that runs a Common Criteria evaluated version of the z/OS operating system.

HSMs hosting the TOE are typically accessed through PKCS#11 services of some host library such as the central crypto-
graphic service provider of IBM mainframe operating systems, the Integrated Cryptographic Service Facility (ICSF) [ICS16].

The deployment, initialization and configuration of the TOE also requires a Trusted Key Entry (TKE) workstation to be
present and attached to the zSeries mainframe and the z/OS system running on it. The TKE workstation thereby acts
as the designated entity on which administrative tasks for the TOE are carried out by the system administrators, and on
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which site-specific settings such as compliance options can be selected conveniently. Documentation associated to the
TKE workstation product provides guidance about its installation as well as the installation and configuration of the TOE
[TKE19].

With the exception of signatures generated by the TKE workstation, the TOE expects no cryptographic functionality from
the host. From the viewpoint of the TOE, the TKE workstation and the non-signing services that it provides, as well as
the involved interfaces between abstraction layers (such as ICSF, the central cryptographic service provider of the z/0S
operating system [ICS16]) are not considered trusted.

Reflecting the lack of trust in external entities, the TOE provides an end-to-end secured channel when it participates in
state migration; digital signature covers the entire exported state and prevents modification by intervening parties. TKE
administrative commands are similarly covered by digital signatures; communications between TKE and TOE instances are
signed, and we expect no additional integrity protection from the (untrusted) entities on these paths.

To facilitate simpler compliance detection, domains report a condensed form of their control point setup as “compliance
attributes”, and are expected to be passed to applications/host administrators through ICSF queries or TKE displays. Note
that host tooling, such as TKE consoles, may include single-button controls to select compliance [TKE19, Fig. 159].

While outside TOE scope, ICSF provides the user-visible, PKCS#11-compliant external interfaces corresponding to TOE-
level EP11 ones. Since ICSF maps PKCS#11-using application calls to the TOE, most of its interaction is with non-
administrative (“functional”) TOE interfaces. ICSF also presents card and domain compliance settings as vendor-extended
PKCS#11 attributes to PKCS#11 applications [ICS16, Table 10] or make it available to the entire system through logging
facilities [ICS18, Displaying coprocessor hardware status].

2 Conformance claims

This Security Target and the TOE conform to version 3.1 (rev. 5) of the Common Criteria for Information Technology
Security Evaluation with the following specific claims:

1. CC Part 2, extended
2. CC Part 3, conformant

3. Package conformant to EALA4.

This security target does not claim conformance to any protection profile.

3 Security Problem Definition

3.1 Assumptions

A.Key_Generation Key generation and import to the cryptographic module

Cryptographic keys generated by the IT environment and imported into the TOE are cryptographically strong for the intended
key usage and have secure security attributes.

A.Audit_Analysis  Analysis of audit trails
The TOE environment retrieves the audit records of the TOE and analyses them for security violations.
A.Availability  Availability of keys

The TOE environment ensures the availability of cryptographic keys, key components, critical security parameters (CSPs)
and key material.

Application note: Sensitive state may be stored outside the TOE, on essentially untrusted hosts. Sensitive state is encrypted
and authenticated using a combination of AES/256 and HMAC-based signatures, using a MAC key derived from the
controlling WK. Blobs are wrapped in an Encrypt-then-MAC structure [BN08, 1.2, 4.3] [Kra01, 4.1].

Application note: Non-sensitive objects MAY be authenticated by the same authentication infrastructure to allow authen-
tication even without encryption. One application is authenticating attributes together with public keys.

Application note: The TOE in its evaluated configuration does not include firmware-update capabilities.

A.Phys_Protection Physical protection

10
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[ Identifier

T.Compro_CSP Compromise of confidential CSP. An attacker with enhanced-basic attack potential may com-
promise confidential CSP like secret keys, private keys or confidential authentication data, which
enables attacks against the confidentiality or integrity of user data protected by these CSPs or
the TSF using these CSPs as TSF data.

T.Modif_CSP Modification of integrity sensitive CSP. An attacker with enhanced-basic attack potential may
modify integrity sensitive CSP like permanent stored public keys and therefore compromise the
confidentiality or integrity of user data protected by these CSPs or the TSF using these CSPs as
TSF data.

T.Inf_Leakage Information leakage. An attacker with enhanced-basic attack potential may observe and analyse
any timing behaviour observable through the cryptographic boundary (i.e. including the external
interfaces) of the TOE to get internal secrets (especially secret or private cryptographic keys)
or confidential user data not intended for export. The information leakage may be inherent in
the normal operation or caused by the attacker — such as by selection of specific input data,
submitted through valid service calls.

Threat statement ]

T.Malfunction Malfunction of TSF. An attacker with enhanced-basic attack potential may use a malfunction
of the hardware or software, which is accidental in order to deactivate, modify, or circumvent
security functions of the TOE to enable attacks against the integrity or confidentiality of the User
data or the CSP.

T.Masquerade Masquerade authorized data source or receiver. An attacker with enhanced-basic attack poten-
tial may masquerade as an authorized data source or receiver to perform operations that will be
attributed to the authorized user or may gain undetected access to cryptographic module causing
potential violations of integrity or confidentiality of the User data, the CSP or the TSF data.

Table 1: Threats

It is assumed that the IT environment provides the TOE with appropriate physical security, commensurate with the value
of the IT assets protected by the TOE.

Application note: The assumption for physical protection is inherited from the TOEs operating environment, which is a
z Systems mainframe running a z/OS operating system in its evaluated configuration. Note also that the HSM hosting the
TOE comes with tamper-protection features that detect tampering and erase critical data when such tampering is detected.
These tamper-protection features have not been subject to this evaluation.

3.2 Threats
The following threat agents are acknowledged by this security target:

1. host entities, capable of passive observation of the TOE without using functional TOE services, attempting to gain
access to information or functions without attempting active compromise ( “malicious observers,” passive host entities
attempting to query/access information not intended for them)

2. host entities, with explicitly allowed access, attempting to use, access or otherwise utilize TOE services and resources
in a way which the TOE setup prohibits for them (“malicious,users allowed to access the TOE,” those attempting to
access services beyond what they are authorized to)

Table. 1 enumerates the threats considered by this security target.

Note that the definition of malicious observers includes all of the host, since the TOE provides many services without
any authorization — including all queries. Since these services are intentionally widely available to facilitate transparent
auditing, and access to them is is not restricted within the hosting HSM, we assume that all external entities are implicitly
authorized to access such services. Therefore, when passive observers are included — which is already sufficient to exploit,
as an example, side-channel attacks (T.Inf_Leakage, Information leakage) — all passive host entities are considered just
as dangerous as authorized ones are. In other words, our threat model includes malicious observers.

Closely following the traditions of mainframe-related, stateless devices, we mainly ignore threats related to denial-of-service
within the TOE. When deployed on enterprise platforms, the hosts may rate-limit or otherwise restrict overloading of
individual HSMs more efficiently than devices themselves.

Note that since our assumptions specifically exclude firmware updates during the operation of EP11, threats involving
maliciously loaded software are not listed as applicable. This omission is intentional, it is not an oversight.

3.3 Organizational Security Policies

11
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[ Identifier | Organizational Security Policy statement |
OSP.User_Data_Prot Protection of user data by cryptographic functions. The cryptographic module will be used to

protect the confidentiality or integrity or both of information represented by user data which may
be get known or modified by an attacker. The IT system will ensure the availability of the user
data and the cryptographic keys outside the cryptographic module.

OSP.1&A(Admin) Identification and authentication of administrative users. All administrative users must be iden-
tified and authenticated prior to accessing any controlled resources with the exception of read-only
access to public objects.

OSP.Access Access control of TOE functions. The TOE must limit the extent of each user’s abilities to use
the TOE functions in accordance with the TSP.

OSP.Account(Admin) Accountability of (administrative) users Administrative users of the TOE shall be held account-
able for their actions within the system.

Note that accountability is generally restricted to administrative functions (those changing HSM-
internal state).

OSP.Roles Roles. The authorized administrators and users shall have separate and distinct roles associated
with them.

OSP.Endorsed_Crypto Endorsed cryptographic functions. The TOE shall implement Endorsed cryptographic algorithms
and Endorsed cryptographic protocols for the protection of the confidentiality or the integrity or
both of the user data according to the organizational security policy OSP.User_Data_Prot and for
the cryptographic key management according to the organizational security policy OSP.Key_Man.
The cryptographic module must not provide any non-Endorsed cryptographic function.
OSP.Key_Man Cryptographic key management. The CSP, cryptographic keys and cryptographic key compo-
nents are assigned to cryptographic algorithms and protocols they are intended to be used with
and the entities, which are allowed to use them.

OSP.Key_Personal Personal security for cryptographic keys. The cryptographic keys shall be managed in such a
way that their integrity and confidentiality cannot be compromised by a single person.
Application note: Specific exceptions are allowed if the TOE is configured to allow control of
cryptographic keys by single entities.

Table 2: Operational security policies

The organizational security policies of Table 2 are relevant in the context of this security target. Since the TOE stores most
sensitive data externally, and therefore relies on integrity protection of data passed through untrusted external components,
data protection against highly capable attackers is critical.

As a special case of personal security (OSP.Key_Personal), administrators may enable control of specific domains by single
administrator keys. (As with all other administrative setup, this action is world-observable and auditable.) Therefore, the
TOE allows single-administrative control of such keys, if this non-default capability is explicitly enabled.

While compatibility with the PKCS#11 standard prevents EP11 from entirely rejecting keys with problematic combinations of
functionality — such as keys which are allowed to both un/wrap and en/decrypt — the TOE provides additional restrictions
to prevent use of such keys. Therefore, the interpretation of OSP.Key_Man depends on attribute setup.

4 Security Objectives

4.1 Security Objectives, TOE

O.Endorsed_Crypto Endorsed cryptographic functions

The TOE shall provide Endorsed cryptographic functions and Endorsed cryptographic protocols to protect the user data as
required by OSP.User_Data_Prot and for key management.

0O.1&A Identification and authentication of administrative users

The TOE shall uniquely identify administrative users and verify the claimed identity of the user before providing access to
any controlled resources with the exception of read access to public objects. The security functions for authentication of
users shall have strength “enhanced-basic”.

O.Roles Roles known to TOE
The TOE shall provide at least card and domain Administrator, and the User roles.
O.Control_Services Access control for services

The TOE shall restrict the access to its services, depending on the user role, to those services explicitly assigned to this
role. Assignment of services to roles shall be either done by explicit action of an Administrator or by default.

0O.Control_Keys Access control for cryptographic keys
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The TOE shall restrict the access to the keys, key components and other CSP according to their security attributes.
Cryptographic keys intended for the use with Endorsed cryptographic functions must not be used by any non-endorsed
functions.

O.Audit Audit of the TOE
The TOE shall provide the capability to detect and create audit records of security relevant events associated with users.
O.Key_Export Export of cryptographic keys

The TOE shall export cryptographic keys with their security attributes. The cryptographic keys and their security attributes
shall be protected in integrity. The TOE shall ensure the confidentiality of secret and private keys exporting them in
encrypted form to authorized entities.

0O.Key_Generation  Generation of cryptographic keys by the TOE
The TOE shall generate cryptographic strong keys using Endorsed cryptographic key generation algorithms.
O.Key_lmport Import of cryptographic keys

The TOE shall import keys with security attributes and verify their integrity. The TOE shall import secret or private keys
in encrypted form or manually using split knowledge procedures only.

0O.Key_Management Management of cryptographic keys

The TOE shall securely manage cryptographic keys, cryptographic key components and CSP. The TOE shall associate
security attributes of the entity the key is assigned to and of the intended cryptographic use of the key. Assignment of the
security attributes to the cryptographic keys, cryptographic key components and CSP shall be either done by explicit action
of a Cryptographic Administrator or by default.

0.Key_Destruction Destruction of cryptographic keys

The TOE shall destruct in a secure way the keys cryptographic key components and other CSP on demand of authorized
users or when they will not be used any more that no information about these keys is left in the resources storing or handling
these objects before destruction.

Application note: The scope of O.Key_Destruction is limited to the TOE, but excludes externally stored replicas (which
are outside TOE scope).

0.Check _Operation  Check for correct operation

The TOE shall perform regular checks to verify that its components operate correctly. This includes integrity checks of
TOE software, firmware, internal TSF data and keys during initial start-up, at the request of the authorised user, and at
the conditions installation and maintenance.

O.Prevent_Inf_Leakage Prevent leakage of confidential information

The TOE shall prevent information leakage about secret and private keys and confidential TSF data outside the cryptographic
boundary and unintended output confidential user information. The TOE shall resist attacks with enhanced-basic attack
potential, which are based on information leakage.

4.2 Security Objectives, Operational Environment

OE.Key_Generation Key generation by IT environment

The IT environment shall ensure the cryptographic strength, the confidentiality and integrity of secret and private keys, the
integrity and authenticity of public keys and correct security attributes if they are generated outside the TOE and imported
into the TOE.

OE.Audit_Analysis  Analysis of TOE audit data

The TOE environment reviews the audit trails generated and exported from the TOE to detect security violation and making
authenticated users accountable for their actions related to the TOE. The administrator is responsible for configuration of
the audit function and provision of the complete chain of exported audit trails.

OE.Personal  Personal security

The card- or domain Administrator, User roles, and — if supported by the TOE — the Maintenance Personal role shall be
assigned with distinct authorized persons. For manual key import at least two different authorized persons are assigned to
cryptographic administrator role.

Application note: Manual key import is not supported in the evaluated configuration.
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O.1&A X X X X

O.Control_Services X

O.Control_Keys X X X | X X

O.Roles X X

O.Audit X

0.Key_Export X | X X | X

0O.Key_Generation X X

O.Key_Import X | X X | X

0O.Key_Management X | X X | X

0.Key_Destruction X X

0O.Check_Operation X X

0O.Endorsed_Crypto X X

O.Prevent_Inf_Leakage X X

OE.Key_Generation X X X

OE.Audit_Analysis X X

OE.Personal X X

OE.Key_Availability X X

OE.Phys_Protection X

Table 3: Security objective rationale

OE.Key_Availability  Availability of cryptographic key and key material

The IT environment shall ensure the availability of the user data, cryptographic keys key components, CSP and key material.

OE.Phys_Protection Physical Protection
The IT environment deploying the TOE, as well as the HSM itself, shall resist physical attacks.
Application note: The TOE inherits any physical protection as an environmental feature of the HSM it is deployed in.

4.3 Security Objectives, rationale

The organisational security policy OSP.User_Data_Prot “Protection of user data by cryptographic functions” addresses
the protection of the confidentiality or integrity or both of information represented by user data of the IT-system to be
provided by the cryptographic module and the protection of availability of user data by the IT system. The security objective
0O.Endorsed_Crypto ensures that TOE provides Endorsed cryptographic functions to protect the user data as required by
OSP.User_Data_Prot. The security objective for the IT environment OE.Key_Availability ensures that IT system protects
the availability of the user data and the cryptographic keys outside the cryptographic module.

The organisational security policy OSP.I&A “ldentification and authentication of users” and authentication of all users
prior to accessing any controlled resources with the exception of public objects. This is directly ensured by the security
objective O.1&A.

The organisational security policy OSP.Access “Access control of TOE functions” address the limitation of the extent of
each users abilities to use the TOE functions in accordance with the TSP.

The security objective O.Control_Services requires the TOE shall restrict the access to its services, depending on the user
role, to those services explicitly assigned to this role which are provided according to the security objective O.Roles. The
security objective O.Control_Keys limits users ability to use the TOE functions to ensure the cryptographic security as part
of the TSP.

The organisational security policy OSP.Account “Accountability of users” requires the users be held accountable for their
actions within the system. The TOE security is required to establish the identity of the users by the objective O.1&A and
to provide the capability to create audit records of security relevant events associated with users by the objective O.Audit.
The security objective for the IT environment OE.Audit_Analysis ensures reviews of the audit trails generated and exported
from the TOE making authenticated users accountable for their actions related to the TOE.

The organisational security policy OSP.Roles “Roles” addresses separate and distinct roles for authorized administrator,
and users. The security objective O.Roles requires the TOE to implement them and the security objective OE.Personal
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requires the IT environment to use them.

The organisational security policy OSP.Endorsed_Crypto “Endorsed cryptographic functions” address the implementation
of Endorsed cryptographic algorithms and Endorsed cryptographic protocols for the protection of the confidentiality or the
integrity or both of the user data according to the organizational security policy OSP.User_Data_Prot and for the key
management. This is ensured generally by the security objective O.Endorsed_Crypto.

The security objective OSP.Key_Man “Cryptographic key management” requires to manage and use the cryptographic
keys as they are assigned to the entities, cryptographic algorithms and protocols. This OSP is implemented generally by the
security objectives for the TOE O.Key_Management for secure key management and specifically for critical processes over
the key life cycle by the security objectives O.Key_Generation, O.Key_Import, O.Key_Export and O.Key_Destruction.
OE.Key_Generation ensures the cryptographic strength, the confidentiality and integrity of secret and private keys, the
integrity and authenticity of public keys and correct security attributes if they are generated outside the TOE and imported
into the TOE.

The organisational security policy OSP.Key_Personal “Personal security for cryptographic keys’ addresses key manage-
ment in a way that the integrity and confidentiality of key can not be compromised by a single person. This OSP is
implemented generally by the security objectives O.Key_Management and O.Control_Keys for secure key management
and use. Furthermore for critical processes, the security objectives O.Key_Import, O.Key_Export and O.Control_Keys
enforce secure key import, key export and key usage. O.1&A ensures that the TOE uniquely identifies users and verifies
the claimed identity of the user before providing access. OE.Personal requires assignment of roles to distinct authorized
persons and that for manual key import at least two different authorized persons are assigned to cryptographic administrator
role.

The threat T.Compro_CSP “Compromise of CSP"” addresses the compromise confidential CSP which enables attacks against
the confidentiality or integrity of user data and TSF data protected by these CSPs. The security objective O.Control_Keys
requires the TOE to restrict the access to the keys, key components and CSP according to their security attributes.
The security objective O.Key_Management ensures these security attributes are managed securely. The security objec-
tive O.Key_Export and O.Key_Import require the protection of secret or private keys in encrypted form or using split
knowledge procedures for their export and import. The security objectives O.Key_Generation requires the TOE and
the OE.Key_Generation requires the environment to generate cryptographic strong keys. O.Key_Destruction requires
the secure destruction on demand of user. The security objective O.Prevent_Inf_Leakage requires the TOE to prevent
information leakage about secret and private keys and confidential TSF data outside the cryptographic boundary.

The threat T.Modif_CSP “Modification of integrity sensitive CSP” address the modification of the integrity sensitive CSP
which enables attacks against the confidentiality or integrity of user data or the TSF protected by these CSPs. The security
objective O.Control_Keys requires the TOE to restrict the access to the keys, key components and CSP according to their
security attributes.

The security objective O.Key_Management ensures these security attributes are managed securely. The security objective
0.Key_Export and O.Key_Import require the protection of the integrity keys during their export and import. The security
objective O.Check_Operation requires verification the integrity of CSP.

The security objective O.Roles requires the TOE to provide at least card and domain Administrators, and User roles, and
Maintenance Personnel if the TOE supports maintenance functionality. The Administrator, User roles and Maintenance
Personnel — if the TOE supports maintenance functionality — will be assigned to authorized distinct persons according to
the security objective for the IT environment OE.Personal.

The threat T.Inf_Leakage “Information leakage” describes that an attacker may observe and analyse any operation timing
through the cryptographic boundary (i.e. including the external interfaces) of the TOE to get internal secrets or confi-
dential user data not intended for export. The protection against this threat is directly required by the security objective
O.Prevent_Inf_Leakage.

The threat T.Malfunction “Malfunction of TSF" describes the use of a malfunction of the hardware or software in order
to deactivate, modify, or circumvent security functions of the TOE to enable attacks against the integrity or confidentiality
of the User data or the CSP. The security objective O.Check_Operation prevents this threat by regular checks verifying
that TOE components operate correctly.

The threat T.Masquerade “Masquerade authorized data source or receiver” describes that an attacker may masquerade
as an authorized data source or receiver to perform operations that will be attributed to the authorized user or gains
undetected access to cryptographic module causing potential violations of integrity, or confidentiality. The security objective
0O.1&A requires the TOE to identify and authenticate the user before providing access to any controlled resources with
the exception of public objects. The security objective O.1&A requires the security functions for authentication of users
to have strength “enhanced-basic” to cover attacks with enhanced-basic attack potential as described in T.Masquerade.
The security objective O.Control_Keys restricts the access to the keys, key components and other CSP according to their
security attributes (including Key entity).
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The assumption A.Key_Generation “Key generation and import to the cryptographic module” deals with the cryptographic
strength and secure security attributes of cryptographic keys generated by the IT environment and imported into the TOE.
This assumption is directly and completely covered by the security objective for the IT environment OE.Key_Generation.

The assumption A.Availability "Availability of keys” describes that the IT environment ensures the availability of crypto-
graphic keys and key material as ensured by the security objective for the IT environment OE.Key_Availability.

The assumption A.Audit_Analysis “Analysis of audit trails” addresses reading and analysis of audit records of the TOE as
implemented by the security objective for the IT environment OE.Audit_Analysis.

The assumption A.Phys_Protection “Physical protection” addresses expectations of physical security of the environment
deploying the TOE as implemented by the security objective for the IT environment OE.Phys_Protection.

5 Extended Components Definition

This Security Target does not define its own extended components. The requirement FCS_RNG.1 “Random Number
Generator” uses the extended component definition from [KS11, 3.1].

6 Security Requirements

Requirements in this section have been extracted from CC Part 2 providing functional requirements, and Part 3 contributing
assurance requirements.

6.1 Security Functional Requirements

Key management (CKM) and related requirements

The following list of key types may be generated or imported to the TOE: AES [NatOla], TDES [Nat99], RSA, EC (elliptic
curve, prime field, NIST P-curves, the SECG SECP256k curve [SEC10, 2.4.1],or BP prime-field elliptic curves [LM10]), DSA
([Nat13a]), DH, generic secret keys (a PKCS#11 abstraction, representing arbitrary sensitive bytes as raw data [PKC04,
12.7]).

FCS_CKM.1/AES Cryptographic key generation — AES
FCS_CKM.1.1/AES

The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm for AES
and specified cryptographic key sizes: 128, 192, 256 bit that meet the following: FIPS 197 [NatOla].

FCS_CKM.1/TDES Cryptographic key generation — TDES
FCS_CKM.1.1/TDES

The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm for TDES
as specified by NIST SP800-67r1 and specified cryptographic key sizes: 168 bit that meet the following: NIST SP800-67r1
[BB12, 3.2, 3.4.1]

FCS_CKM.1/RSA  Cryptographic key generation — RSA
FCS_CKM.1.1/RSA

TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm for RSA as
specified by FIPS 186—4 and specified cryptographic key sizes: 2048, 3072, 4096 bits that meet the following: FIPS 186—4
[Nat13a, 5.1, B.3.1].

Application note: RSA private keys constructed from primality search specified by [Nat13a, B.3.1] are also compliant with
PKCS1 [JKO03, 3.2] (which does not specify details of prime-candidate enumeration in comparable detail, but specifies
subsequent use/encoding of keys). "PKCS1" key generation of specific key sizes — when compatible with [Nat13a, B.3.1]
sizes — is simply mapped to the specific prime-candidate enumeration method of [Nat13a, B.3.1].

FCS_CKM.1/DSA Cryptographic key generation — DSA
FCS_CKM.1.1/DSA
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TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm for DSA as
specified by FIPS 186—4 and specified cryptographic key sizes DSA: 2048 or 3072 bits that meet the following: FIPS 186—4
[Nat13a, 4.4.1, B.1].

FCS_CKM.1/EC Cryptographic key generation — EC
FCS_CKM.1.1/EC

TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm elliptic curve
keypair generation with specified cryptographic key sizes: 192, 224, 256, 320, 384, 512 or 521 bits, that meet the following:

According to FIPS 186—4, B.4.2, “Keypair generation by testing candidates” over low-cofactor prime-field curves [Nat13a,
6.1.1].

Supported elliptic curves are:

o EC/NIST: NIST P-curves P-192, P-224, P-256, P-384, P-521 [Nat13a, D.1.2]

e Brainpool (prime-field) curves: BP192r1/t1, BP224r1/t1, BP256rl/t1, BP320r1/t1, BP384rl/t1, BP512r1/t1 [LM10,
3]
e SECP256K [SECI0, 2.4.1]

FCS_CKM.2/Ilmport  Cryptographic key distribution — Import

FCS_CKM.2.1/Import

The TSF shall distribute cryptographic keys in accordance with a specified cryptographic key distribution method
key entry that meets the following: keys can only be imported in encrypted form, optionally using split knowledge
procedures for administrative keys using administrator-selected thresholds and keypart counts

Application note: Key import is in encrypted form, optionally under split-knowledge procedures [BSI08, 6.1.1]. The TOE
does not support clearkey key transport. Key encryption uses AES with a card-specific 256-bit key, implementing key
wrapping algorithm AES-KW1 according to RFC 3394 and RFC 5649 [HD09, HS02].

FCS_CKM.2/Export Cryptographic key distribution — Export

FCS_CKM.2.1/Export

The TSF shall distribute cryptographic keys in accordance with a specified cryptographic key distribution method
key export that meets the following: keys can only be exported in encrypted form, optionally using split knowl-
edge procedures for administrative keys using administrator-selected thresholds and keypart counts

Application note: Key import — and export, if applicable — are in encrypted form, optionally under split-knowledge
procedures (Fig. 5) [BSI08, 6.1.1] The TOE does not support clearkey key transport.

Application note: Functional key-transport, as described by PKCS#11 UnwrapKey () and WrapKey () calls, transports keys
as single parts in encrypted form. While EP11 replaces the original — unauthenticated — PKCS#11 format with integrity-
protected and signed formatting, and always includes attributes with keys — both are incompatible changes — it retains
the single-pass nature of key transport.

Application note: Administrative key transport, unless single-part transport is enabled, uses split-knowledge procedures,
individually encrypting keyparts. Split keys use Shamir key-sharing [Sha79] with administrator-selected thresholds and
keypart counts.

Application note: All key import and export is authenticated through digital signatures or symmetric MACs, depending on
context.

Application note: Sensitive state stored on the host is not treated as “import” or “export” in the PKCS#11 sense, as this
object storage is opaque to PKCS+#11 (it does not cross PKCS#11 Un/WrapKey () calls). For the purposes of these security
functional requirements, blob-related state import and export qualifies as such, and fulfills the requirements.

FCS_CKM.4 Cryptographic key destruction

FCS_CKM.4.1

The TSF shall destroy cryptographic keys in accordance with a specified cryptographic key destruction method
overwriting plaintext with zeros when the key is to be destroyed, or when a transient copy is no longer used
that meets the following: FIPS 140-2 [FIPO1, 4.7.6].
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Application note: Keys are stored in regular RAM or in battery-backed RAM. Objects on the heap or stack, when released,
are overwritten with zeroes.

Application note: Specific destruction methods as may be required for flash memory or EEPROM are not required here.
The TOE has a function for emergency erasing keys in case tampering is detected, but since this function is triggered
by hardware and since this hardware is considered to be part of the IT environment in this evaluation, the function for
emergency erasing keys is not assessed in this evaluation.

FCS_COP.1 Cryptographic operation

FCS_COP.1/AES Cryptographic operation — AES
FCS_COP.1.1/AES

The TSF shall perform encryption and decryption in accordance with a specified cryptographic algorithm AES in ECB or CBC
modes with cryptographic key sizes 128, 192, and 256 bits that meet the following: FIPS 197 [Nat0OIa], NIST SP800-38A
[Nat01b].

FCS_COP.1/TDES Cryptographic operation — TDES

FCS_COP.1.1/TDES The TSF shall perform encryption and decryption in accordance with a specified cryptographic
algorithm TDES in ECB or CBC modes with cryptographic key size 168 bit that meet the following: NIST SP800-67r1
[BB12, 3.2, NIST SP800-38A [Nat01b].

FCS_COP.1/RSA  Cryptographic operation — RSA
FCS_COP.1.1/RSA

The TSF shall perform digital signature generation and verification, encryption and decryption in accordance with a specified
cryptographic algorithm RSA and cryptographic key sizes 2048, 3072, 4096 bits that meet the following:

Encryption:

e RSAEP of RFC 3447 (PKCSI v2.1) [JK03, 5.1.1]
e According to RSAES-PKCS1-V1_5-ENCRYPT of RFC 3447 (PKCSI v2.1) [JK03, 7.2.1]
o According to RSAES-OAEP-ENCRYPT of RFC 3447 (PKCS1 v2.1) [JK03, 7.1.1]

Decryption:

e RSAEP of RFC 3447 (PKCSI v2.1) [JK03, 5.1.2]
e According to RSAES-PKCS1-V1_5-DECRYPT of RFC 3447 (PKCS1 v2.1) [JK03, 7.2.2]
e According to RSAES-OAEP-DECRYPT of RFC 3447 (PKCS1 v2.1) [JK03, 7.1.2]

Signature generation:

o RSASPI of RFC 3447 (PKCSI v2.1) [JK03, 5.2.1]
o According to RSAES-PKCS1-V1_5-SIGN of RFC 3447 (PKCS1 v2.1) [JK03, 8.2.1]
o According to RSAES-PSS-SIGN [JK03, 8.1.1]

Signature verification:

o RSAVPI RFC 3447 (PKCS1 v2.1) [JK03, 5.2.2]
e According to RSAES-PKCS1-V1_5-VERIFY of RFC 3447 (PKCS1 v2.1) [JK03, 8.2.2]
o According to RSAES-PSS-VERIFY of RFC 3447 (PKCS1 v2.1) [JK03, 8.1.2]

Application note: In RSA signature modes, hash functions SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 are usable.
PSS/OAEP use of hash functions restricts message and mask generation function (MGF) choices to identical functions—one
may not select mismatched message-hash/MGF pairs.

Application note: PKCS#11 terminology of “key un/wrapping” excludes security attributes, describes only raw — symmetric
— keys being encrypted by asymmetric ones [PKC04, 11.14]. This usage corresponds to the raw en/decryption primitive of
[JKO03, 8, 7.1], even if the description there does not specifically mention un/wrapping.
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Application note: Reflecting PKCS#11 usage as of this writing, references to PKCS1 v2.1 (reissued as RFC 3447) are at
that specific level, and do not yet enforce PKCS1 v2.2 additions (RFC 8017).

FCS_COP.1/ECDSA  Cryptographic operation — ECDSA
FCS_COP.1.1/ECDSA

The TSF shall perform ECDSA signature generation or verification in accordance with a specified cryptographic algorithm
Elliptic Curve Digital Signature Algorithm (ECDSA) with specified cryptographic key sizes: 192, 224, 256, 320, 384, 512
or 521 bits, that meet the following:

ECDSA signature generation: According to ANSI X9.62-2005, section 7.3; ECDSA signature verification: ANSI X9.62-2005,
section 7.4.1 (verification with a public key) [Ame05, 7.3, 7.4.1].

The underlying hash functions SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 are supported.

Supported elliptic curves are:

o EC/NIST: NIST P-curves P-192, P-224, P-256, P-384, P-521 [Nat13a, D.1.2]

e Brainpool (prime-field) curves: BP192r1/t1, BP224r1/t1, BP256r1/t1, BP320r1/t1, BP384r1/t1, BP512r1/t1 [LM1I0,
3]
o SECP256K [SEC10, 2.4.1]

Application note: For historical reasons, consistent with PKCS#11 v2.20 and v2.40 migration best practices, ECDSA
operations which incorporate hashing are usable both as vendor-extended proprietary and post-v2.20 PKCS#11 mechanisms.
The internal implementations are identical (since the IBM vendor extensions are functionally equivalent, even if they precede
their subsequently standardized PKCS#11 constants).

FCS_COP.1/ECDH  Cryptographic operation — ECDH
FCS_COP.1.1/ECDH

The TSF shall perform EC Key Agreement in accordance with a specified cryptographic algorithm Elliptic Curve Diffie-
Hellman Key Exchange (ECDH) with specified cryptographic key sizes: 192, 224, 256, 320, 384, 512 or 521 bits, that meet
the following:

EC Key Agreement: According to ANSI X9.63-2001, section 5.4.1 [Ame01, 5.4.1] (also [Nat13b, 5.7.1.2]).

Supported elliptic curves are:

o EC/NIST: NIST P-curves P-192, P-224, P-256, P-384, P-521 [Nat13a, D.1.2]

e Brainpool (prime-field) curves: BP192r1/t1, BP224r1/t1, BP256r1/t1, BP320r1/t1, BP384r1/t1, BP512r1/t1 [LM1I0,
3/
e SECP256K [SEC10, 2.4.1]

Application note: The TOE provides ECDH primitives for key agreement, but does not procedurally distinguish between
static and ephemeral keys. Therefore, we may not identify the specific instance used from [Natl13b, 6.1-6.3], only the
base ECDH primitive [Nat13b, 5.7.1.2].

FCS_COP.1/DSA  Cryptographic operation — DSA
FCS_COP.1.1/DSA

The TSF shall perform digital signature generation and verification in accordance with a specified cryptographic algorithm
DSA and cryptographic key sizes P=2048, N=224 or 256, P=3072, N=256 that meet the following: FIPS 186—-4 [Nat13a].

Application note: The hash-integrated versions may use hash functions SHA-224 and SHA-256 as underlying hash function
(and corresponding secret-key bitcount). Note that hash functions beyond SHA-1 have not been standardized by the original
PKCS#11 [PKCO04] in 2009, and have been deprecated/prohibited by subsequent algorithm-strength restrictions.

Application note: The TOE in the evaluated configuration restricts parameter choices to the standard-predefined possibilities.
Other combinations MAY NOT be enabled in the TOE; additional restrictions MAY further reduce the choices the TOE
supports.

FCS_COP.1/SHA  Cryptographic operation — SHA
FCS_COP.1.1/SHA

The TSF shall perform secure hashing in accordance with a specified cryptographic algorithm SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512, SHA-512/224, SHA-512/256, and cryptographic key sizes (not applicable) that meet the following:
FIPS 180-4 [Nat12].
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FCS_COP.1/Backup_Enc  Cryptographic operation — Encryption of Backup data

FCS_COP.1.1/Backup_Enc The TSF shall perform encryption and decryption in accordance with a speci-
fied cryptographic algorithm AES in CBC mode with cryptographic key size 256 bit that meet the following:
FIPS 197 (AES) and NIST SP800-38A (CBC mode) [Nat01a].

Application note: in addition to the AES/CBC transport-key encryption, Individual keyparts are encrypted through RSA or
ECIES (see FCS_CKM.1.1/EC, FCS_CKM.1.1/EC).

FCS_COP.1/Backup_Int  Cryptographic operation — Backup integrity protection

FCS_COP.1.1/Backup_Int The TSF shall perform calculation and verification of cryptographic checksums in
accordance with a specified cryptographic algorithm SHA-256, with RSA signatures and cryptographic key sizes
4096-bit RSA that meet the following: FIPS 180-4 [Nat12], FIPS 186-4 [Natl3a]

Application note: the signature is the final section in backup data, signing the host-visible form of serialized state (i.e.,
non-sensitive data plus ciphertext). Backup RSA signatures use ANSI x9.31 padding and SHA-256 as a hash function.

Application note: in addition to signatures on backup state, individual parts of the migrated state are authenticated as
individual administrative commands.

FCS_RNG.1 Generation of random numbers

FCS_RNG.1.1 The TSF shall provide a [deterministic| random number generator that implements:

DRG.3.1 If initialized with a random seed, from its internal hardware noise source. The internal state of the
RNG shall [have a minimum of 256 bits of entropy].

DRG.3.2 The RNG provides forward secrecy.

DRG.3.3 The RNG provides backward secrecy even if the current internal state is known.

FCS_RNG.1.2 The TSF shall provide random numbers that meet:
DRG.3.4 The RNG, initialized with a random seed of 256 bits from its internal hardware noise source, generates
output for which 234 strings of bit length 128 are mutually different with probability P > 1-216.

DRG.3.5 Statistical test suites cannot practically distinguish the random numbers from output sequences of
an ideal RNG. The random numbers must pass test procedure A of AIS 31 [KS11, 2.4.4.1] and no other
test suites.

Application note: The DRNG is implemented as a Hash DRBG using SHA-256 as its hash function according to [BK15,
10.1.1].

Application note: The DRNG is reseeded with 256 bits of fresh entropy after a maximum of 1 MB (222 bits) output has
been taken.

User identification (FIA)
FIA_ATD.1 User attribute definition

FIA_ATD.1.1 The TSF shall maintain the following list of security attributes belonging to individual users:

1. Identity (for Administrators and Identified users)

2. Role (for Administrators)

3. Reference authentication data (i.e., certificates, for Administrators)
4. Session PIN (for Identified users)

Application note: Administrative operations involving identities are authenticated cryptographically, relying on administrator
public keys. Such calls index administrators through public-key hashes, and assign roles implicitly, as part of command
selection.

Application note: The session PIN is used as a parameter for the function protecting the confidentiality and integrity of
session bound objects. Without the correct specification of the session PIN the TOE will reject those objects when imported
to the TOE for use with TOE operations.

FIA_UID.1 Timing of identification
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FIA_UID.1.1 The TSF shall allow the use of CSP objects not bound to a session, query commands on behalf
of the user to be performed before the user is identified.

FIA_UID.1.2 The TSF shall require each user to be successfully identified before allowing any other TSF-
mediated actions on behalf of that user.

FIA_LUAU.1 Timing of authentication

FIA_UAU.1.1 The TSF shall allow access to non-administrative functions and query commands unless they are
prohibited by the domain control point access control policy on behalf of the user to be performed before the
user is authenticated.

FIA_UAU.1.2 The TSF shall require each user to be successfully authenticated before allowing any other
TSF-mediated actions on behalf of that user.

Application note: as described under FIA_ATD.1.1, authentication is implicit, and coincides with use of keys in the same
call sequence. Identification, where applicable, always precedes functional operations.

Application note: Unidentified users: non-administrators submitting requests which do not use session-bound objects, are
not authenticated.

FIA_USB.1/GE  User-subject binding — General

FIA_USB.1.1/GE The TSF shall associate the following user security attributes with subjects acting on the
behalf of that user:

1. Identity (for Administrators and Identified users)
2. Role (for Administrators)

Application note: In addition to user security attributes, requests are also associated with domain-controlling keys implicitly,
inferred from the domain targeted by the request (and are referenced by a corresponding indicator in host-supplied state).
During subsequent processing, after cross-checking, these keys are checked and managed together with the Identity/Role
of the request submitter.

FIA_USB.1.2/GE The TSF shall enforce the following rules on the initial association of user security attributes
with subjects acting on the behalf of users: the initial role of the user is Unidentified user.

In addition to user security attributes, except for card level administrative commands, the domain key is associated with the
subject based on the Domain identifier passed in with the request. Domain keys are associated implicitly, inferred from the
domain targeted by the request. During subsequent processing, after cross-checking, domain-related attributes are checked
and managed together with the Identity/Role of the request submitter.

FIA_USB.1.3/GE The TSF shall enforce the following rules governing changes to the user security attributes
associated with subjects acting on the behalf of users:

1. the subject attribute Role shall be changed from Unidentified user to Identified user on presentation of a
valid PIN Blob;

2. after successful authentication the subject attribute Role shall be changed to the Administrator role asso-
ciated with the certificate used for authentication if the command is an administrative command requiring
a valid signature;

FIA_USB.1/IU  User-subject binding — User

FIA_USB.1.1/1U The TSF shall associate the following user security attributes with subjects acting on the
behalf of that identified user: session PIN.
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FIA_USB.1.2/1U The TSF shall enforce the following rules on the initial association of user security attributes
with subjects acting on the behalf of identified users: the session PIN is initially provided with the Login function
and the session token provided in return by the Login function needs to be provided for every operation that
creates or uses a CSP that is bound to that session.

FIA_USB.1.3/IU The TSF shall enforce the following rules governing changes to the user security attributes
associated with subjects acting on the behalf of users: none.

FIA_AFL.1  Authentication failure handling

FIA_AFL.1.1 The TSF shall detect when [any number of] unsuccessful authentication attempts occur related
to administrative commands requiring authentication.

FIA_AFL.1.2 When the defined number of unsuccessful authentication attempts has been [met], the TSF shall
not perform the requested operation.

Application note: Since the TOE is stateless, administrators are authenticated with every command they issue.

Application note: Since authentication is cryptographically assisted, and unsuccessfully authenticated requests are rejected,
the TOE does not react to unsuccessful attempts other than rejecting requests. Conversely, no upper limit on unsuccessful
authentication is defined.

Application note: As a side effect of cryptographic authentication, trivial denial-of-service attempts to invalidate any valid,
authenticated entity are prevented, by construction.

Protection of user data (FDP)
FDP_ACC.1/CP  Subset access control — Control Points

FDP_ACC.1.1/CP The TSF shall enforce domain control point access control policy on Users as subjects and
functions as objects and all subjects and the objects and functions affected by a control point

FDP_ACF.1/CP  Security attribute based access control — Control Points
FDP_ACF.1.1/CP The TSF shall enforce the domain control point access control policy to objects based on

the following: attributes: control points defined for the domains of the module; subjects: all submitted requests;
objects: keys or state included in submitted requests.

FDP_ACF.1.2/CP The TSF shall enforce the following rules to determine if an operation among controlled
subjects and controlled objects is allowed: a restriction defined by a control point becomes active when the
related control point bit is set for the active domain; in this case, the restriction defined by the control point is
enforced for all subjects.

FDP_ACF.1.3/CP The TSF shall explicitly authorise access of subjects to objects based on the following
additional rules: none.

FDP_ACF.1.4/CP The TSF shall explicitly deny access of subjects to objects based on the following additional
rules: none.

FDP_ACC.2/OSA Complete access control — Object Security Attribute

FDP_ACC.2.1/0OSA The TSF shall enforce the object security attribute access control policy on users as
subjects and key objects and all operations among subjects and objects covered by the SFP.

FDP_ACC.2.2/0OSA The TSF shall ensure that all operations between any subject controlled by the TSF and
any object controlled by the TSF are covered by an access control SFP.

FDP_ACF.1/OSA  Security attribute based access control — Object Security Attribute
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FDP_ACF.1.1/0OSA The TSF shall enforce the [object security attribute access control policy] to objects based
on the following: [attributes: security attributes of key objects, subjects: sessions identified by requests which
include keys or state bound to session identifiers].

FDP_ACF.1.2/0OSA The TSF shall enforce the following rules to determine if an operation among controlled
subjects and controlled objects is allowed: an operation is allowed if no attribute in the security attribute list
prohibits the operation.

Application note: Object attributes are listed in section 8.3.2 (page 48); most are implemented as defined by the PKCS#11
standard.

FDP_ACF.1.3/0OSA The TSF shall explicitly authorise access of subjects to objects based on the following
additional rules: [none].

FDP_ACF.1.4/0SA The TSF shall explicitly deny access of subjects to objects based on the following additional
rules: [export of attribute-bound key objects without their attributes is denied, changing the attribute-bound
attribute of objects is prohibited].

FDP_ACC.2/SO Complete access control — Session Objects

FDP_ACC.2.1/SO The TSF shall enforce the session object access control policy on subjects: sessions refer-
enced by requests (and Identified users, if session identification is successful); objects: keys or state bound to
sessions and all operations among subjects and objects covered by the SFP.

FDP_ACF.1/SO Security attribute based access control — Session Objects

FDP_ACF.1.1/SO The TSF shall enforce the session object access control policy to objects based on the
following: subject: session identifiers that are created upon session creation (Login() command), objects: keys
or state bound to session identifiers if the request includes such state, attributes: presence or absence of the
referenced session, indicating permission or prohibition, if the request includes keys or state bound to session
identifiers.

Application note: Session identifiers are created using the PIN entered by the user and a nonce generated by the TOE. The
session identifier is a MAC value, calculated over the PIN and the nonce. Since session objects are also encrypted with the
WK of the domain, session objects cannot be used outside the domain they have been created in.

Application note: When a Login() command is called by a user, a PIN blob is created which contains the session identifier.
When calling functions that intend to create session objects, the call to the function needs to include the PIN blob as part
of the parameter list.

Application note: When supplying session-bound object, sufficient information is included in the object-embedded ses-
sion field to identify the controlling session, but not enough to reconstruct the originating PIN blob.

FDP_ACF.1.2/SO The TSF shall enforce the following rules to determine if an operation among controlled
subjects and controlled objects is allowed: objects: session objects can only be accessed — used — within
the domain where the session identifier was created, when the session has not been terminated, and when the
related session identifier is provided in the function call, subjects: sessions associated with session identifiers
when the function call uses state bound to sessions.

FDP_ACF.1.3/SO The TSF shall explicitly authorise access of subjects to objects based on the following
additional rules: [objects created without specifying a session identifier are considered public objects and can
be accessed (used) by anyone].

FDP_ACF.1.4/SO

The TSF shall explicitly deny access of subjects to objects based on the following additional rules: [when the
WK key of the domain changes when a session in the domain is still active, access to previously created session
objects is no longer possible].
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FDP_ITC.2 Import of user data with security attributes

FDP_ITC.2.1 The TSF shall enforce the domain access control policy when importing user data, controlled
under the SFP, from outside of the TOE.

FDP_ITC.2.2 The TSF shall use the security attributes associated with the imported user data.

FDP_ITC.2.3 The TSF shall ensure that the protocol used provides for the unambiguous association between
the security attributes and the user data received.

FDP_ITC.2.4 The TSF shall ensure that interpretation of the security attributes of the imported user data is
as intended by the source of the user data.

FDP_ITC.2.5 The TSF shall enforce the following rules when importing user data controlled under the SFP
from outside the TOE: when the integrity check for imported user data fails, data is rejected.

FDP_ETC.2 Export of user data with security attributes

FDP_ETC.2.1 The TSF shall enforce the domain access control policy when exporting user data, controlled
under the SFP(s), outside of the TOE.

FDP_ETC.2.2 The TSF shall export the user data with the user data's associated security attributes.

FDP_ETC.2.3 The TSF shall ensure that the security attributes, when exported outside the TOE, are unam-
biguously associated with the exported user data.

Application note: see section 7.1.2 (“Transport of security attributes”).
FDP_ETC.2.4 The TSF shall enforce the following rules when user data is exported from the TOE: none
FDP_IFC.2 Complete information flow control

FDP_IFC.2.1 The TSF shall enforce the domain access control policy on information: all requests submitted
to the TOE except card level administrative commands; subjects: sessions associated with requests when the
latter include state bound to session identifiers; attributes: domain-specific CPs (7.1.6) and all operations that
cause that information to flow to and from subjects covered by the SFP.

FDP_IFC.2.2 The TSF shall ensure that all operations that cause any information in the TOE to flow to and
from any subject in the TOE are covered by an information flow control SFP.

FDP_IFF.1  Simple security attributes

FDP_IFF.1.1 The TSF shall enforce the domain access control policy based on the following types of subject and
information security attributes: subjects: all requests except card-level administrative commands, information
security attribute: domain identifier.

FDP_IFF.1.2 The TSF shall permit an information flow between a controlled subject and controlled information
via a controlled operation if the following rules hold: all requests except card-level administrative commands
must include a domain identifier. All objects exported will be encrypted with the wrapping key of that domain.
They can not be used with requests that contain a different domain identifier.
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FDP_IFF.1.3 The TSF shall enforce the no additional rules.

FDP_IFF.1.4 The TSF shall explicitly authorise an information flow based on the following rules: no additional
rule.

FDP_IFF.1.5 The TSF shall explicitly deny an information flow based on the following rules: no additional rule.

Application note: This policy specifies that objects created by the TOE are always bound to a domain. This is achieved by
using different domain wrapping keys to protect the confidentiality and integrity of those objects before exporting them to
the host system.

FPT_TIL.1 Inter-TSF detection of modification

FPT_ITIL.1.1 The TSF shall provide the capability to detect modification of all TSF data during transmission
between the TSF and another trusted IT product which is another instance of the TOE within the following
metric: validation of digital signatures and hash-based verification patterns.

FPT_ITI.1.2 The TSF shall provide the capability to verify the integrity of all TSF data transmitted between
the TSF and another trusted IT product and perform rejection of the data if modifications are detected.

Application note: The TSF provides the capability to migrate keys or state information from one instance of the TOE to
another one. This migration is controlled through authenticated administrative actions both on the exporting instance of
the TOE as well as on the importing instance of the TOE. Exporter and importer instance of the TOE will first negotiate a
transport wrapping key which is used to encrypt key material transported between the two instances of the TOE. Exported
key material is encrypted using this key.

Application note: Commands to export and import must be signed by the configured number of administrators. The
transport wrapping key may also be exported in several key parts, requiring several administrative users to co-operate during
the negotiation of the wrapping key between the source and the target instance of the TOE.

FPT_STM.1 Reliable time stamps
FPT_STM.1.1 The TSF shall be able to provide reliable timestamps.
FDP_RIP.2 Full residual information protection

FDP_RIP.2.1 The TSF shall ensure that any previous information content of a resource is made unavailable
upon the [allocation of the resource to OR deallocation of the resource from] all objects.

Application note: Objects released within the TOE, including deallocated persistent structures and transient memory regions,
are wiped before they are released. During allocation, as a redundant security measure, newly allocated memory is explicitly
cleared before use.

Application note: Since TOE operation is mainly stateless, other than state changes to global structures, most memory
wiping impacts transient stack structures allocated during request-response processing. Changes to global structures update
both heap-resident and persistent copies.

Security audit (FAU)
FAU_GEN.1 Audit data generation

FAU_GEN.1.1 The TSF shall be able to generate an audit record of the following auditable events:

(a) start-up and shutdown of the audit functions;
(b) all auditable events for the [not specified] level of audit; and
(c) completion of selftests

(d) import of keys or key components
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(e) export of keys or key components
(f) destruction of TOE-resident keys
(g) recovery from detected failures

(h) administrative commands changing state

FAU_GEN.1.2 The TSF shall record within each audit record at least the following information:

(a) Date and time of the event, type of event, subject identity, and the outcome (success or failure) of the event; and
(b) For each audit event type, based on the auditable event definitions of the functional components included in the ST,

e sequence number of the audit event

e audit-instance identifier of the event log

o identifier of the key(s) involved (where applicable)
e TOE-generated salt

Application note: see section 7.1.9 (“Audit”)
FAU SAR.1  Audit review

FAU_SAR.1.1 The TSF shall provide all host entities with the capability to read all audit data from the audit
records.

Application note: Reading audit records does not remove them from TOE-maintained history; therefore, providing read
access to audit events does not allow the host to compromise event history through read-only access.

FAU_SAR.1.2 The TSF shall provide the audit records in a manner suitable for the user to interpret the
information.

Application note: Data structures — i.e., formatting and sub-fields interpretation — of audit records are fully documented
as part of the external EP11 interface specification.

FAU_STG.1 Protected audit trail storage

FAU_STG.1.1 The TSF shall protect the stored audit records in the audit trail from unauthorised deletion.

FAU_STG.1.2 The TSF shall be able to [prevent] unauthorised modifications to the stored audit records in the
audit trail.

Application note: Audit records, inserted into a non-malleable hash chain, are public information, accessible by crypto officers
and administrators. The integrity protection prevents the hash chain from modification or deletion of already-logged entries.

See also: FAU_STG.4.
FAU_STG.4 Prevention of audit data loss

FAU_STG.4.1 The TSF shall [overwrite the oldest stored audit records] and no other action if the audit trail
is full.

Application note: Since the TOE-internal audit history is sized conservatively; past items need not be overwritten before
they may be saved by the host.

Management of TSF and protection of TSF data (FMT)
FMT_SMF.1 Specification of Management Functions

FMT_SMF.1.1 The TSF shall be capable of performing the following management functions: (1) management
of security functions behaviour, (2) management of reference authentication data, (3) management of security
attributes of cryptographic keys, cryptographic key components and CSP.
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Application note: for related management functionality, see (1) FMT_MTD.1.1/CP (2) FMT_MTD.1/Admin and
FMT_MTD.1/User, and (3) FMT_MSA.1/Key_Man_1, FMT_MSA.1/Key_Man_2, FMT_MSA.3.

FMT_SMR.1  Security roles

FMT_SMR.1.1 The TSF shall maintain the roles:

o Administrator

— Card-level administrator
— Domain administrator

o [dentified user

e Unidentified user

FMT_SMR.1.2 The TSF shall be able to associate users with roles.

Application note: roles correspond to the following PKCS+#11 entities, and additional ones defined by the TOE for its
necessary roles not representable by standard PKCS#11 ones:

1. Administrator: authenticated host entities capable of changing administrative setup
2. Identified user: user submitting a PKCS#11 request that uses a session-bound object within a session

3. Unidentified and unauthenticated user: any other host entity

Application note: Association with the host entity originating the request is implicit based on context.

Application note: The TOE does not support a Maintenance role.

FMT_MTD.1/Admin  Management of TSF data — Administrator

FMT_MTD.1.1/Admin The TSF shall restrict the ability to [create, clear and delete] the Reference Authentication
Data to Administrator.

Application note: Management of administrative identities — i.e., certificates — and corresponding attributes is performed
through authenticated, administrative commands, not available to other users, or an insufficient number of cooperating
administrators.

FMT_MTD.1/User.1 Management of TSF data — User identification

FMT_MTD.1.1/User_1 The TSF shall restrict the ability to [define] the Reference Identification Data to the
user for their own Reference Session Identification Data.

Application note: Management of sessions, the only TOE-internally retained user identification data is available to users only
after verifying proof-of-possession (i.e., removal of session data requires cooperation of the originating user). Administrators
may forcibly terminate a session, but not identify as an authenticated user.

FMT_MTD.1/User.2 Management of TSF data — User de-identification

FMT_MTD.1.1/User_2 The TSF shall restrict the ability to [delete] the Reference Identification Data to the
user for their own Reference Session ldentification Data.

FMT_MTD.1/CP  Management of TSF data — Control Points

FMT_MTD.1.1/CP The TSF shall restrict the ability to [set or clear] the domain access-control points to
administrator.

FMT_MSA.1/Key Man_1 Management of security attributes — Unmodifiable attributes

FMT_MSA.1.1/Key_Man_1 The TSF shall enforce the object security attribute access control policy to restrict
the ability to change default and modify the security attributes Identity of the key, Key entity, Key type, Key
validity time period, Identity of the key component, Key entity of the key component, Key entry method, Identity
of the CSP, CSP usage type to no role.
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FMT_MSA.1/Key_Man_2 Management of security attributes — Modifiable attributes

FMT_MSA.1.1/Key_Man_2 The TSF shall enforce the object security attribute access control policy to restrict
the ability to [modify] the security attributes Key usage type, key/state access control rules to Identified user.

Application note: once created, the following attributes are not modifiable by any TOE-accessing entity:

e key, key component, or CSP identity

e key or CSP type

e key validity (which is not interpreted by the TOE)

e key or CSP entity (which is not interpreted by the TOE)
e key entry method (i.e., the "LOCAL" attribute)

e non-key CSP usage type (all non-key CSPs have predefined, non-modifiable usage patterns, such as: Digest states
are only accepted by C Digest. .. services)

e CSP access control rules

Application note: the following attributes are modifiable by the controlling owner, with standard restrictions removing
subsequent capability of further modification:

e key usage type, within those allowed for the key type (such as: subsequently removing the capability to SIGN/WRAP
etc., for keys where multiple algorithm types may be supported)

e key/state access control rules — possibly managed in the TOE, not the key itself — such as removing extractability
from an originally EXTRACTABLE key

Application note: For some attributes, further restrictions may be added to prevent modification by any host entity, includ-
ing the controlling user or administrator (i.e., effectively switch some state to NON-MODIFIABLE to potentially anyone).
An intermediate restriction level, RESTRICTABLE is available to prohibit addition/activation, but still support deactiva-
tion/removal, of capabilities. While modification is allowed for the controlling user, restrictions may be imposed by other
entities (Fig. 4).

Application note: Queries are available to every user capable of issuing card requests. Queries related to host-resident
objects are implicitly restricted to users allowed to access those objects; no query modifies the keys/state it is accessing.

FMT_MSA.2 Secure security attributes

FMT_MSA.2.1 The TSF shall ensure that only secure values are accepted for Identity of the key, Key entity,
Key type of the key, Key usage type, Key access control rules, Key validity time period, Identity of the key
component, Key entity of the key component, Key entry method, Identity of the CSP, CSP usage type, CSP
access control rules.

Application note: invalid host-supplied attributes are rejected during object creation — including key generation — and
during any modification attempt, even authorized ones. Insecure attributes or attribute combinations are marked invalid
when the applicable CP etc. setup rejects them (Fig. 4).

Application note: When an imported object with inconsistent attributes is encountered, even if properly authenticated, the
object is rejected as invalid.

FMT_MSA.3 Static attribute initialisation

FMT_MSA.3.1 The TSF shall enforce the object security attribute access control policy, session object access
control policy to provide [restrictive] default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2 The TSF shall allow no role to specify alternative initial values to override the default values
when an object or information is created.
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Application note: most attributes require explicit specification by the originator; prudent defaults are provided for several
values if not specified. System-wide defaults are read-only, and not influenced by any attribute selection (which are only
applied to particular objects).

Application note: The TOE may enable additional checks, rejecting previously generated objects as insufficiently restrictive,
as dynamic administrative actions (such as when activating additional usage-control restrictions).

TSF protection (FPT)
FPT_TST.1  TSF testing

FPT_TST.1.1 The TSF shall run a suite of self tests [during initial start-up OR at the request of any authorised
user] to demonstrate the correct operation of [cryptographic primitives of the TSF].

FPT_TST.1.2 The TSF shall provide authorised users with the capability to verify the integrity of [TSF data
in persistent storage].

Application note: all persistently stored internal data is integrity-checked through an embedded SHA-256 hash [Nat12, 6.2],
which is transparent to the rest of the TOE. When such data is made available, it has been implicitly verified by the TOE.

FPT_TST.1.3 The TSF shall provide authorised users with the capability to verify the integrity of [stored TSF
executable code].

FPT_TDC.1 Inter-TSF basic TSF data consistency

FPT_TDC.1.1 The TSF shall provide the capability to consistently interpret security attributes of cryptographic
keys, key components and CSP when shared between the TSF and another trusted IT product.

Application note: In addition to administrative authentication of the control and data-flow of inter-TSF sharing, the receiving
instance also verifies signature on the data, and consistency of all imported components.

FPT_TDC.1.2 The TSF shall, during import, use the encoded key attributes after it has verified their integrity
when interpreting TSF data from another trusted IT product.

Application note: see FPT_TDC.1.1. Note that state import is atomic. Any failure reverts to the original state, if
applicable, or forces zeroization of the receiving module (if recovery is impossible due to unexpected infrastructure failures).

FPT_FLS.1 Failure with preservation of secure state
FPT_FLS.1.1 The TSF shall preserve a secure state when the following types of failures occur: self test fails.

Application note: selftest failures prohibit further operations, generating log entries if still possible. Recovery actions, such
as resetting the module through host infrastructure commands, may be attempted by the host.

6.2 Security Assurance Requirements

The EAL4 was chosen to permit a developer to gain maximum assurance from positive security engineering based on good
commercial development practices which, though rigorous, do not require substantial specialist knowledge, skills, and other
resources. EAL4 is applicable in those circumstances where developers or users require high levels of independently assured
security in conventional commodity TOEs and are prepared to incur security specific engineering costs.

The evaluation assurance level has been chosen commensurate with the threat environment that is experienced by typical
consumers of the TOE. In this Security Target the physical protection is left to the TOE environment, i. e. the TOE is
expected to be operated in some secure environment. The protection of the TOE by the physical enclosure and sensors of
the HSM is currently out of the scope of this software-only evaluation. A re-evaluation including the physical protection
features will be considered once the new hardware is available.
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6.3 Security Functional Requirements Rationale
6.3.1 Dependencies

All dependencies mentioned in CC Part 2 for the SFRs have been met, except the following:

e FCS_CKM.4, as formally required by FCS_COP.1/SHA has been omitted, because hash functions do not use keys
that would require destruction. Any claim for key generation is not applicable, either.

e FTP_ITC.2 dependencies to either FTP_ITC.1 or FTP_TRP.1 have been omitted. Communications between mul-
tiple TOE instances are indirect, are authorized by Administrators, and do not implement a single trusted chan-
nel. (Indirect communications are logically equivalent to multiple, independent administrative/management activities
FMT_MTD.1/Admin.)

6.3.2 Coverage of Security Objectives

The security objective O.Endorsed_Crypto (Endorsed cryptographic functions) requires the TOE to provide Endorsed cryp-
tographic functions and Endorsed cryptographic protocols to protect the user data as required by OSP.User_Data_Prot
and for key management. This security objective is provided by the SFR: FCS_CKM.1/AES, FCS_CKM.1/TDES,
FCS_CKM.1/RSA, FCS_CKM.1/DSA, FCS_CKM.1/EC, FCS_CKM.2/Import, FCS_CKM.2/Export, FCS_CKM.4.
Also the SFRs FCS_COP.1/AES, FCS_COP.1/TDES, FCS_COP.1/RSA, FCS_COP.1/DSA, FCS_COP.1/ECDSA,
FCS_COP.1/ECDH, FCS_COP.1/SHA, and FCS_RNG.1, which require meeting Endorsed standards for cryptographic
functions. FDP_ITC.2 and FDP_ETC.2 enforce the use of Endorsed cryptographic functions for import and export of
confidential cryptographic keys.

Hash functions supported by the TOE, while not depending on keys, similarly meet Endorsed standards for cryptographic
functions (FCS_COP.1/SHA).

The security objective O.1&A (ldentification and authentication of users) requires the TOE to identify uniquely users and to
verify the claimed identity of the user before providing access to any controlled resources with the exception of read access
to public objects. This security objective is provided by the following SFR:

e FIA_UID.1 allows unidentified users to execute TOE operations that are neither restricted to an administrator, nor
use session bound objects, nor are restricted in general by the control point access control policy of the TOE only.

Conversely, FIA_UID.1 requires identification before any other TSF mediated action.

e FIA_UAU.1 allows Unauthenticated users to execute TOE operations that are neither restricted to an administrator
nor are restricted in general by the control point access control policy of the TOE. The TOE requires identification
selection of a claimed role and requires authentication before any other TSF mediated action.

e FIA_AFL.1 requires detection and reaction to unsuccessful authentication attempts.

e FIA_ATD.1 requires maintaining security attributes to individual users including ldentity, Role and Reference authen-
tication data as prerequisite for identification and authentication of users.

e FIA_USB.1/GE and FIA_USB.1/IU associating the identity and the role with the subjects acting for the authenti-
cated user.

¢ FMT_MTD.1/Admin restricts the creation, clearing and deletion of Authentication Reference Data to the role
Administrator.

e FMT_MTD.1/User restricts the ability to modify the Reference authentication data the user to which belongs this
security attribute.

The security objective O.Roles (Roles known to TOE) is implemented by the SFR FMT_SMR.1 which requires the TOE
to provide at least the Administrator, Unidentified user and Unauthenticated user roles.

The security objective O.Control_Services (Access control for services) requires the TOE to restrict the access to its
services, depending on the user role, to those services explicitly assigned to the role. Assignment of services to roles shall
be either done by explicit action of an Administrator or by default. This security objective is provided by the following SFR:

e FDP_ACC.2/CP and FDP_ACF.1/CP require access control to the general services of the TOE per domain,

e FMT_SMF.1 lists the security management functions.
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FMT_SMR.1 describing the minimum list of roles and restrictions to these roles.
FMT_MTD.1/CP limits the management of domain control points to administrators.

FMT_MSA.1/Key_Man_1 and FMT_MSA.1/Key_Man_2 require limitation to the management of security at-
tributes of cryptographic keys, key components and CSP describing the available services for these objects.

FMT_MSA.2 and FMT_MSA.3 describe additional requirements to the management of security attributes to enforce
the access control SFP for FDP_ACF.1/0OSA and FDP_ACF.1/SO.

The security objective O.Control_Keys (Access control for cryptographic keys) requires the TOE to restrict the access to
the keys, key components and other CSP according to their security attributes. This security objective is provided by the
following SFR:

FDP_ACC.2/0SA and FDP_ACF.1/0SA require access control to the key keys, key components and other CSP
according to their security attributes,

FDP_ACC.2/SO and FDP_ACF.1/SO require access control to the keys and other CSP of the TOE according to
the session they belong to.

FMT_MSA.1/Key_Man_1 and FMT_MSA.1/Key_Man_2 require limitation to the management of security at-
tributes of cryptographic keys, cryptographic key components and CSP describing the access rights, available services
and properties for these objects.

FMT_MSA.2 ensures that only secure values for cryptographic keys, key components and CSP are accepted for
security attributes.

FDP_IFF.1 requires enforcement of security attributes, including domain access control policies.

FDP_IFC.2 requires enforcement of domain access control policies on requests and operations involving subjects in
the TOE.

The security objective O.Audit (Audit of the TOE) requires the TOE to provide the capability to create audit records of
security relevant events associated with users. This security objective is provided by the following SFR:

FAU_GEN.1 lists the auditable events to be provided by the TOE,

FAU_SAR.1 requires to provide at least with Crypto Officer and Administrator the capability to read all audit data
from the audit records

FAU_STG.1 requires protection of the stored audit records from unauthorised deletion and prevention of modification.
FAU_STG.4 shall prevent loss of audit data if the audit trail is full by overwriting the oldest stored audit records.

FPT_STM.1 requires the TOE to provide reliable time stamps for its own use.

The security objective 0.Key_Management (Management of cryptographic keys) requires the TOE to manage securely
cryptographic keys, cryptographic key components and CSP. This security objective is provided by the following SFR:

FCS_CKM.1/AES, FCS_CKM.1/TDES, FCS_CKM.1/RSA, FCS_CKM.1/DSA, FCS_CKM.1/EC and the lifecycle-

related FCS_CKM.2/Ilmport, FCS_CKM.2/Export, FCS_CKM.4 provide the Endorsed cryptographic functions
used by key management.

FDP_ITC.2 and FDP_ETC.2 ensure the import and export of cryptographic keys, cryptographic key components
and CSP with security attribute, which are associated with these objects for key management.

FMT_SMF.1 list the security management functions and FMT_SMR.1 the roles for key management (i.e. Administrators

for administrative, Users for operational keys).

FMT_MSA.1/Key_-Man_1, FMT_MSA.1/Key_Man_2 FMT_MSA.2 and FMT_MSA.3 describes the manage-
ment of security attributes of cryptographic keys, cryptographic key components and CSP.

FPT_TDC.1 ensures the consistency of the security attributes of cryptographic keys, cryptographic key components
and CSP.
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The security objective O.Key_Export (Export of cryptographic keys) requires the TOE to export keys with their security
attributes and protected in integrity. This is provided by the following SFR:

e FCS_CKM.2/Export requires the TSF to distribute keys by export methods meeting Endorsed standards and provides
a refinement for keys exported for manual import.
e FDP_ETC.2 requires the TSF to export keys unambiguously associated with their security attributes.

e FPT_TDC.1 requires to ensure inter-TSF basic TSF data consistency for exported security attributes of cryptographic
keys, key components and CSP.

e FCS_COP.1/Backup_Enc requires the TSF to export state encrypted using Endorsed standards (including any
key material included in exported state).

e FCS_COP.1/Backup_Int requires the TSF to export state with integrity protection.

The security objective O.Key_Generation (Generation of cryptographic keys by the TOE) requires the TOE to gen-
erate cryptographic strong keys using Endorsed cryptographic key generation algorithms. This is provided by the SFR
FCS_CKM.1/AES, FCS_CKM.1/TDES, FCS_CKM.1/RSA, FCS_CKM.1/DSA, FCS_CKM.1/EC, which require the
use of Endorsed key generation algorithms and FCS_RNG.1 describing requirements for the random number generator
needed for key generation.

The security objective 0.Key_Import (Import of cryptographic keys) requires the TOE to import keys with security at-
tributes and verify their integrity. The TOE shall import secret or private keys in encrypted form or manually using split
knowledge procedures only. This is provided by the following SFR:

e FCS_CKM.2/Import requires the TSF to distribute by key import methods meeting Endorsed standards and provides
a refinement for manually imported keys.

e FDP_ITC.2 requires the TSF to import keys unambiguously associated with their security attributes.

e FPT_TDC.1 requires to ensure inter-TSF basic TSF data consistency for imported security attributes of cryptographic
keys, key components and CSP.

e FPT_ITI.1 requires the TSF to detect modification of imported data, including keys, key components, and CSP.

The security objective O.Key_Destruction (Destruction of cryptographic keys) requires the TOE to destruct keys crypto-
graphic key components and other CSP on demand of users or when they will not be used any more in a secure way that no
information about these keys is left in the resources storing or handling these objects before destruction. This is provided
by the following SFR:

e FCS_CKM.4 requires the TSF to provide Endorsed mechanisms for key destruction.

The security objective O.Check_Operation requires the TOE to perform regular checks to verify that its components
operate correctly including integrity checks of TOE software, firmware, internal TSF data and keys. This is provided by the
SFR:

e FPT_TST.1 requiring TSF self tests.

e FPT_FLS.1 requires the TSF to preserve a secure state when self-test fails.
The security objective O.Prevent_Inf_Leakage (Prevent leakage of confidential information) requires the TOE to prevent
information leakage about secret and private keys and confidential TSF data outside the cryptographic boundary and

unintended output confidential user information. This is provided by the following SFR:

e FDP_RIP.2 requires the TOE to ensure that any previous information content of a resource is made unavailable.

e FCS_CKM.4 requires the TSF to provide Endorsed mechanisms for key destruction.
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7 TOE Summary Specifications
The TOE implements the following set of security functions to address requirements:

Secure key management, internal. Generation and proper lifecycle-tracking of keys within the TOE

Secure maintenance of host-based keystores. Preserving the confidentiality and integrity of sensitive data, including
keys and sessions, while exported from the TOE.

Security attributes of keys are maintained both in TOE-internal form, and when keys are transported through
PKCS#11-derived WrapKey and UnwrapKey calls. Sessions and other non-key state only have TOE-internal forms:
unlike keys, they are not transported over module PKCS#11 logical boundaries.

Cryptographic operations. Services provided by the TOE, both for internal and host-application use (Table 4).

Application identification and authentication. Unambiguous identification of application identities for keys and sessions
bound to specific identities (jobs, processes, etc.).

Policy enforcement. Reliable enforcement of usage restrictions based on session, object, TOE policy, or their combination.

Usage restrictions, representation and enforcement. Hierarchical enforcement of different kinds of restrictions, imple-
menting the infrastructure which may be used to enforce policies.

Administrative services. ldentity-based access to security-relevant management functions and internally stored adminis-
trative data.

Selftests. Compliance and integrity tests of cryptographic primitives for functionality usable by the TOE.
Audit. Reporting security-relevant events for logging. Query capabilities for auditing security-relevant data within the TOE.

Random-number generation. Generate a bitstream entirely within the TOE, suitable for cryptographic purposes such as
key generation.

Additional functionality, other capabilities not included in top-level security functions listed above:

Key virtualization. Segmentation of keystores based on trust root, application identity, or the combination of these.
Management of multiple trust roots.

Secure storage. Integrity protection and owner identification for keys, sessions, or other security-critical date when
inside the TOE. This category includes both long-term resident data and transient, per-request objects.

7.1 Security Functions

Please note that some functions described in the following sections may not be part of the TOEs evaluated security func-
tionality. Only functions described in the SFRs of section 6.1 have been subject to this evaluation. Other functions have
been described here for a better understanding of the whole product and completeness reasons only.

7.1.1 Secure key management, internal

Keys generated by, or imported to the TOE are associated with their attributes, and are not separated in the evaluated con-
figuration. Internally generated and imported keys differ in their PKCS#£11-standard CKA_LOCAL attribute—which indicates
TOE-internal generation, when true—but are managed identically otherwise. The CKA_LOCAL attribute is supplied by the
TOE, it is maintained together with key material, and it is never modifiable (SFR FDP_ACF.1)

The TOE supports the PKCS#11-standard CKA_MODIFIABLE attribute to separate read-only and modifiable keys. Following
PKCS+#11-prescribed behaviour, transition to non-modifiable state — removing CKA_MODIFIABLE — is non-reversible. An
additional attribute, CKA_NEVER MODIFIABLE, indicates the history of the key (whether it has been created as read-only).
The attribute is maintained together with key material, and it is never modifiable (SFR FDP_ACF.1)

A non-standard, weaker form, CKA_IBM_RESTRICTABLE, is provided to mark keys which may accommodate further capability-
restricting modifications, but are not eligible for capability-extending changes. This extension allows the TOE to derive
multiple forms of the same key without making them all read-only, but still preventing the derived keys from activating
attributes not allowed by the originator. As an example, one may derive a MAC-Verify key from a base symmetric key
(lacking the capability to Sign), knowing that the owner of the Verify-only key is incapable of re-activating the CKA_Sign
attribute even if allowed to restrict the key.

33



IBM Enterprise PKCS#11 v1, rev. 288, 2010-03-20 20:50:40Z
Security Target doc. tree state: 3dd4d9e83607

The TOE uses the PKCS#11-standard CKA_EXTRACTABLE attribute to prevent key export. The corresponding, read-only
CKA_NEVER_EXTRACTABLE stores past history, indicating when a key has been created so.

In the PKCS#11 meaning, all TOE-managed keys are “sensitive”, and imply the CKA_SENSITIVE attribute. At least one
host PKCS#11 provider uses this attribute to select when a “protected-key” PKCS#11 object needs to be routed to
Enterprise PKCS#11.

Lack of key expiration Note that the stateless TOE lacks the concept of key expiration. If desired, keys may be bound
to time-restricting sessions, forcing expiration of all associated objects upon session removal (Logout). Similarly, all objects
encrypted by a specific WK are invalidated if the controlling WK is ever changed, even if the actual objects reside by users,
disjoint from Administrators controlling WKs.

All transient administrative keys — such as import-controlling public keys — are destroyed upon the first successful use, and
require no further temporal restrictions (SFR FDP_RIP.2). These keys are only saved within transient memory internally,
and they must be newly generated if the HSM containing them gets restarted before their use.

The TOE, as an implementation of the standard PKCS#11 API, acknowledges the possibility of key expiration, but makes
it clear that temporal restrictions are outside its scope, therefore it ignores time-based key expiration. This matches the
security rationale of PKCS#11 itself [PKC04, 10.6.2,10.7.2], and it is mentioned here for completeness.

7.1.2 Secure maintenance of host-based keystores

Sensitive data including keys and session state, when exported from the TOE, reside on untrusted hosts. The TOE protects
both the integrity and confidentiality of any such sensitive data, and unambiguously associates it with any controlling
entities. Sensitive data does not leave the TOE in cleartext.

Host-resident sensitive data is protected by authenticated encryption, with exactly one of multiple possible wrapping keys
— WKs — and associated MAC keys, maintained within the TOE. The authenticated encryption is a standard Encrypt-
then-MAC construct, using symmetric encryption with HMAC-based integrity protection [Kra0l, BN08] [Smal3, 4.3.1].
Host-resident state carries its internal attributes; see section 8.3.2 for a list.

All sensitive data is unambiguously associated with a controlling WK, and optionally with an identity-derived session iden-
tifier, if the controlling application requests objects bound to sessions. (SFR FIA_ATD.1, SFR FIA_USB.1/GE, SFR
FDP_ACC.2/SO) The TOE creates token-scoped “token objects”, not bound to any specific authenticated user [PKCO04,
6.4] when no session identifier is used (SFR FIA_USB.1/GE, SFR FIA_UID.1 and SFR FDP_ACF.1/S0).

The session identifier is constructed through a call to the Login() service (SFR FIA_USB.1/GE); it serves as a Boolean
pass/fail indicator of presence/absence of a session-associated entity, but contributes no additional attributes. The validity
of the session is, however, evaluated before checking any of the object-embedded attributes.

Internally, multiple WKSs are stored and selected based on infrastructure-level information, which are transparent at the
PKCS#11 service level. Each internal segment — “domain” — uses a dedicated WK for its own sensitive data (SFR
FIA_USB.1/GE). Objects belonging to different WKs are mutually incompatible. Rollover of a WK, or its destruction
prevents use of key material or state bound to that WK (SFR FDP_ACF.1/S0). See “Key virtualization” (7.1.11) for the
details of WK separation.

Certain non-sensitive objects, specifically public keys, may also be bound to specific WKs. Such objects are used, for example,
where the TOE must associate non-sensitive data with attributes. These non-sensitive structures are authenticated by an
HMAC, sharing a MAC key with their sensitive — private-key — counterparts. These non-sensitive objects also include
attributes.

Transport of security attributes In the evaluated configuration, functional key transport is possible only with “attribute-
binding,” a non-PKCS#11 key transport method where keys and attributes are not separated from each other. The
corresponding format unambiguously specifies attributes within the encrypted — and authenticated — wrapped key object.
These security requirements rule out all standard-defined PKCS#11 key-transport modes, necessitating the definition of our
proprietary — but documented — formats. (SFR FDP_ETC.2, SFR FDP_ACF.1/0SA)

Host-resident keys, both encrypted blobs and authenticated public keys, always include their security attributes; see
section 8.3.2 for an attribute listing. (SFR FDP_ETC.2, SFR FDP_ITC.2, SFR FDP_ACF.1/0SA)

Administrative key transport relies on implicit interpretation of keys — also authenticated by regular administrative proce-
dures — and therefore does not explicitly support attributes.

Both administrative and non-administrative key transport, in the TOE configuration, supports authenticated-encrypted
formats, and rejects transported keys when modifications are detected. (SFR FPT_ITI.1) Data inconsistencies, when en-
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countered, are interpreted as corrupted data; note that formats are versioned to allow version-dependent migration (and
therefore the TOE may be deployed without the need to interpret unknown structure versions) (SFR FPT_TDC.1, SFR
FDP_ITC.2)

Administrative keys are identified through whitelists. While X.509 certificates are used to identify public keys, no additional
attribute is interpreted. Note that presence on the whitelist is sufficient information for authorization, therefore attributes
within X.509 certificates [RHPFS02, 4.2] are ignored. The lack of attribute interpretation by the TOE immunizes it to
attacks on certificate (trust) chaining [BJR™ 14, IX].

7.1.3 Cryptographic operations

The TOE provides cryptographic signing/verification, key generation and derivation, hashing, encryption and decryption
services to the host it is attached to, or remote clients of that host. The external API provided by the TOE is derived from
PKCS#11 [PKC04], with adaptation to accommodate a mainly-stateless instantiation.

The following groups of functional services are offered to users:

1.

N o o &~ w

©

Generate or derive keys: AES, TDES, RSA, EC (elliptic curve, prime field, NIST P-curves, the SECG SECP256k curve
or BP ones), DSA, DH, generic secret keys (a PKCS#11 abstraction for arbitrary, unstructured sensitive data)

(SFR FCS_CKM.1/AES, SFR FCS_CKM.1/TDES, SFR FCS_CKM.1/RSA, SFR FCS_CKM.1/DSA and SFR FCS_CKM.1/EC)

Generate or verify digital signatures with asymmetric keys [Nat13a]
(SFR FCS_COP.1/RSA, SFR FCS_COP.1/ECDSA, and SFR FCS_COP.1/DSA)

Key agreement (SFR FCS_COP.1/ECDH)

Encrypt or decrypt data with asymmetric keys (SFR FCS_COP.1/RSA)

Encrypt or decrypt data with symmetric keys (SFR FCS_COP.1/AES, SFR FCS_COP.1/TDES,
Cryptographic hash functions (not requiring WKs) (SFR FCS_COP.1/SHA)

Random-number generation (not requiring WKs) (SFR FCS_RNG.1)

Storage, use, and disposal of secrets within the TOE

Query TOE-internal capabilities

Services are available to anonymous users, without identification, if the host grants access to the TOE. Host-based traffic
restrictions may be implemented, but they are not visible to the TOE, and are outside the scope of this security target.

Services involving sensitive state require an installed, active WK in the domain they are requested from. The small subset of
services which do not involve sensitive data — hashing and random-number generation — may be serviced even by domains
lacking active WKGs.

Administrative and other services built on top of cryptographic primitives are used by the TOE. They are discussed in their
respective sections.

Queries returning information about TOE capabilities are not access-controlled (SFR FIA_UAU.1).

7.1.4 Application identification and authentication

The TOE distinguishes applications using its services based on either proof of possession, or cryptographic authentication,
in the cases where users of services need to be identified. Beyond these identification methods, the TOE lacks the concept
of actual users. (SFR FMT_SMR.1)

Non-administrative services are available without authentication, unless they reference host-resident state which involves
sessions. (SFR FIA_UID.1). Objects bound to sessions are usable as long as the corresponding session is registered within the
TOE. Sessions are ordinarily registered or removed through the Login and Logout services, which are available to all users el-
igible to support requests (SFR FIA_USB.1/IU, SFR FDP_ACF.1/SO, SFR FMT_MTD.1/User_1, SFR FMT_MTD.1/User_2,
SFR FIA_UAU.1)

Session identifiers are derived from host-supplied data, and are therefore influenced, but not fully determined, by host-
visible information, such as passphrases. Host code is responsible for separating multiple entities — jobs, processes — as
cryptographic identification is not available at this stage. The session derivation process calculates an HMAC incorporating
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| Algorithm | Key size (bits) | Mode | Operation ‘
| Symmetric algorithms ‘
AES 128, 192, 256 ECB,CBC | encryption, decryption
TDES 192 (168 effective) | ECB,CBC | encryption, decryption
l Asymmetric algorithms ‘
RSA 2048, 3072, 4096 N/A signing, signature verification, encryption,
decryption
EC (ECDSA, ECDH) NIST/BP sizes N/A signing, signature verification, key agreement
(NIST or Brainpool prime-field curves)
P-192, P-224, P-256, P-384, P-521, BP-192,
BP-224, BP-256, BP-320, BP-384, BP-512
[R, twisted], SECP256K
DSA [ 2048, 3072 | N/A | signing, signature verification
Hash and MAC algorithms
| SHA-1, 224, 256, 384, 512, 512/224, 512/256 || N/A | N/A | (hashing) |
| Deterministic random-number generator (RNG) ‘
[ 1ISO 18031 (Hash-DRBG, SHA-256) [ N/A [ N/A \ |

Table 4: Algorithms supported by the TOE

[ Functionality “ Key type and size (bits) [ Mode H Operation ]
[ Functional keys controlling PKCS#11 key objects ]
Wrapping key (per do- AES /256 encryption Encrypt host-resident objects. One instance per domain.

main)

(keys or state)

Possibly diversified through session identifiers.

Domain MAC key

HMAC-SHA256,/256

generate/verify
object MAC

Integrity-protection of host-resident objects.
Derived inside TOE from corresponding WK.

Session-unique keys
(transient)

AES/256

encryption
(keys or state)

Encrypt host-resident objects, if bound to sessions.
Derived as transient key, disposed immediately after use.

Administrative keys, persistent

Administrator identity RSA or EC verify Verify: signatures on authenticated commands.
Only public key resides within TOE.

Device keypair RSA /4096 sign Sign: module-originated responses. Generated inside the
TOE, never exported.

Device certificate RSA /4096 verify of device keypair: exported to allow device attestation.

Administrative keys, transient

Transport key, symmetric AES /256 encrypt or decrypt || encrypts serialized administrative state.
Unique key used by each export. Destroyed after export.
Key-exporter, KEK RSA or EC encrypt Asymmetric-encryption transport key or its keyparts.
Only public key is resident within TOE: imported by admin-
istrators with export request.
Private key resides with “keypart holders”, outside TOE.
Key-importer, KEK RSA or EC decrypt Asymmetric-decrypt transport key or its keyparts.
Destroyed after successful import. Never exported.
[ Functional keys for PKCS#11 use ]

Any PKCS#11 key

as requested by PKCS#11
applications

any supported

Used together with a controlling WK, optionally with an
additional session identifier.

Table 5: Key types maintained within the TOE
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host-supplied information, and is assumed to be one-way, not revealing the originating host data. Once generated, the TOE
assumes that host entities possessing the session identifier are authorized to access any host-resident state bound to that
session — i.e., session-users authenticate through proof of possession (SFR FIA_USB.1/IU)

Loss of the derived session identifier — a MAC — is expected to be insufficient to recover the originating identification data
[Mur08, 3]. Once created, session identifiers are immutable (SFR FIA_USB.1/1U).

Once a session has been established, parts of its identifier is embedded into all objects bound to that session (SFR
FIA_USB.1/GE). The partial identifier is host-visible, but is insufficient to recreate the full session identifier. Requests
using a session-bound object are rejected when the session is unregistered from the TOE (through Logout ()). Removing a
session without administrator intervention requires proof of possession: only those possessing the full session identifier may
unregister the session. (SFR FDP_ACF.1/S0O)

As a special case, a signed administrative command is eligible to remove any session from the TOE. This possibility exists
to forcibly remove sessions if the originating passphrase may not be recreated; it is beyond the capabilities of any PKCS#11
entity.

Administrators are identified through their X.509 public-key certificates, which are loaded into the TOE, with the correspond-
ing private keys resident outside the TOE. Administrators are identified through signatures on state-changing administrative
commands:

e Lists of eligible administrative certificate is maintained inside the TOE at all times. Management of the lists is a
regular signed administrative service.

e Signed commands include industry-standard SignerInfo structures, specifying signer identity — i.e., SKI, Subject
Key Identifier, hash of the entire public key — and signature algorithms

e Signed commands are unambiguously targeted to the whole card or a particular domain, including card serial number
(which the TOE uses as provided by infrastructure, but is unable to change)

e Transaction counters are maintained to enforce freshness: each signed command must advance a monotonically
increasing counter within the TOE

e random nonce-like “instance identifiers” are generated upon each zeroization — return to factory state — to prevent
replay of previous administrative traffic

Note that administrative certificates use X.509 structures as portable containers for public keys. Any attributes within
certificates [RHPFS02, 4.2] are ignored, since we only infer identification from administrator whitelists. The lack of at-
tribute interpretation by the TOE immunizes it to attacks on certificate (trust) chaining [BJRT 14, IX] [GIJT12, 7].

Lists of administrators are maintained for the whole card, and separate lists exist for each internal domain. When identifying
a signature, a sufficient number of disjoint administrators must sign the command, with the accepted list depending on the
targeted entity (see Fig. 3):

e Card-level commands must be signed by card-level administrators. These administrators have the highest possible
precedence, since they may administer domain administrators.

e Domain-level commands may be signed either by administrators of the targeted domain, or module administrators.
We recommend keeping the sets of administrators disjoint, and not mixing administrators as normal practice.

All administrator-signature verification steps are unambiguous: the set of eligible administrators is known, and the required
number of signatures is determined from the command and the attribute setup of the targeted entity.

7.1.5 Policy enforcement

Usage restrictions combine object-level attributes and those of the domain where the request is executed. Objects feature
fundamental functional restrictions, such as allowing encryption/signature generation/etc. by a given object, with the
following capabilities stored within each object:

1. encrypt or decrypt data

2. sign data or verify signatures on data

3. wrap or unwrap other keys
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Figure 3: Functionality and location of administration-relevant keys

4. derive keys from the current one, including some key agreement algorithms (which are grouped under key derivation,
not un/wrapping, under PKCS+#11)

5. object attributes may be modified
6. attributes may be removed from the object, but not added (custom attribute)

7. object is Attribute-Bound, never transported without attributes (custom additions to PKCS#11)

Most of the above capabilities correspond directly to standard PKCS#11 Booleans. Interpretation is polymorphic: decryption
for RSA keys affects a different set of algorithms than decryption for symmetric keys, but these capabilities are orthogonal to
algorithms or keytypes. Similarly, sign or verify are interpreted in the context of key type: asymmetric keys' private objects
may only sign, while their public counterparts may only verify. (SFR FDP_ACC.2/OSA, SFR FDP_ACF.1/0SA)

Attributes are supplied with the object during key generation, and are stored authenticated within objects; appropriate
defaults are provided if they are not supplied with the request (SFR FMT_MSA.3). Boolean attributes and expected-
compliance profiles are replicated to the clear object header, so policy compliance may be audited outside the TOE. The
TOE rejects clearly invalid combinations of attributes, if conflicting ones are supplied, or if requested attributes are rejected
by policy, such as when considered insecure (SFR FMT_MSA.2). (Note that the interpretation of “insecure” is dynamic,
depending on CP setup.)

Certain attributes are specific to EP11:

1. object attributes may be removed, but not added, if the RESTRICTABLE attribute is present

2. object may be marked as attribute-bound, not eligible for transport where attributes and key material may be separated

See 8.3.2 for a full listing.

Each domain features a static list of control points, which generally restrict operations (8.3). Control points form a single
linear list, assigned without hierarchy, and are a mixture of generic and very specific restrictions. The TOE does not provide
tools for grouped management of control points, or map arbitrary abstract policies to collections of control points: these
are assumed to be undertaken on the host. Compliance with the most relevant security profiles, as derived from the control
point setup, is passively reported (see below). (SFR FDP_ACC.1/CP, SFR FDP_ACF.1/CP)

Attribute enforcement follows a conservative default: operations MUST be actively enabled by attributes, control points
etc. Conversely, none of the requested functions may be prohibited by any active attribute. (SFR FDP_ACF.1/0SA)

For an object to be operational, the domain hosting the request must allow the operation (SFR FDP_IFF.1), the object
must not be restricted from executing that operation, and the corresponding attributes and algorithms (“mechanisms” in
PKCS#11 terminology) must be consistent with the intended use. (SFR FDP_IFC.2, SFR FDP_IFF.1)

The TOE also enforces standards-compliance profiles, indicating when the active set of control points prescribes an as-
sumptions compatible with specific — revisions of — security standards. Currently, the following compliance profiles are
reported:
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1. compliance with FIPS 140-2 restrictions, algorithms and minimum key sizes. Two versions, differentiating FIPS 140-2
in 2009 and 2011. (Advancing to compliance with the 2011 profile prohibits algorithms with 80-bit strength, and
some minor algorithmic restrictions.)

2. compliance with key-related functional requirements derived from [BSI08] requirements (excluding hardware security),
and algorithm selections corresponding to the then-current rules of the Bundesnetzagentur. Two versions, for years
2009 and 2011, representing changes in algorithmic restrictions.

Compliance profiles are reported as a passive entity: one may set control points, and compliance profile is derived from that
set. The host may support profiles, and turn them into filter conditions for control points, which is outside the TOE.

Compliance profiles are controlled at a domain level, but they are also reported as aggregates. The card reports the
compliance profile as a logical AND of all active domains' compliances. Therefore, if the card compliance profile reports
compliance bit N, all active domains will be known to comply with standard(revision) N.

Reporting of all control points or compliance profiles is available as a signed, audit-ready administrative query

7.1.6 Usage restrictions, representation and enforcement

Restrictions on the use of attribute-equipped blobs are enforced in a hierarchical set of checks. Allowing or rejecting use of
any object is controlled by the combination of all restriction categories (Fig. 4), allowing only the subset of objects allowed
by all:

1. Control Points (CPs) of the responsible domain, representing a diverse set of functional-level usage restrictions (see
sections 8.3 and 8.3.1 from page 46). (SFR FDP_ACF.1/CP)

While CPs restricting keytype/strength/mode form clearly defined groups, most CPs are not so categorized. These
“other” CPs impose usage restrictions on very diverse points of backend control flow, therefore the highlight in Fig. 4
with no direct connection.

2. Administrative attributes derived from per-domain CP setup, or their card-level aggregated equivalents. Fig. 4 shows
this relationship, when domain/card compliance attributes are derived from CPs.

Compliance attributes, as an example, are a condensed representation of multiple CPs. They are provided as read-only
attributes to show compliance — or lack thereof — with security standards or regulations.

3. Key size, type, initialization state, usage restrictions of the blob-internal key/state, as recovered from the blob.

Blob attributes MAY be modifiable or amenable to subsequent restrictions (SFR FMT_MSA.1/Key_Man_2), or may
be always non-modifiable (SFR FMT_MSA.1/Key_Man_1). Partitioning into non/modifiable is static: non-Boolean
attribute types (such as key type, size, curve parameters etc.) are non-modifiable, Booleans MAY be modifiable.
Booleans MAY be further restricted and non-modifiable, such as PKCS#11 EXTRACTABLE or MODIFIABLE at-
tributes.

Supporting modifiable, only restrictable, or non-modifiable objects allows us to implement specific policies derived
from PKCS#11 and extended attributes (SFR FMT_MSA.3).

4. The list of sessions maintained adapted forms of PKCS#11 commands (7.1.4)

5. Restrictions on key size, type, initialization state, operational mode etc. imposed by the PKCS#11 API. These
restrictions are encoded in control flow, are not runtime-controlled, and are inherited from [PKC04], adapted to our
backend.

APIl-imposed restrictions specify tuples such as: Encrypt () requires an encrypt/state object output by EncryptInit (),
which has not yet used by an incremental EncryptUpdate(). The base key initializing encryption state must have
been an encryption-capable keytype, and had its CKA_ENCRYPT attribute set. Data passed to Encrypt () may have
size/format restrictions based on algorithm/mode etc.

As shown in Fig. 4, the different types of restrictions force decisions based on different properties of each object (SFR
FDP_IFC.2):

e the availability of PKCS#11 services may be prohibited by CPs. As an example, use of the WrapKey() service is

prohibited if CPs of the responsible domain prohibit any kind of key export, even before checking whether the supplied
blob is WRAP-capable
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e services generally accept only a subset of objects, which must be of the given mode; see Encrypt () example above.

Object checking combines base functionality (Encrypt () requiring state initialized for encryption), past history (in-
cremental and single-call Encrypt () calls may not be mixed), and other similar calls.

e both keytype and cryptographic strength of the object must be permitted by the current CP setup.

Key type checks implicitly include algorithm-category checking: use of any kind of private key is separately controlled
from use of elliptic-curve keys (or even use of specific categories of elliptic curves, see the defined CPs).

e the entire set of object attributes must be consistent with the CP set of the responsible domain. As an example, if the
CP setup prohibits use of keys capable of both en/decryption and un/wrapping, en/decryption and un/wrap-related
object attributes are cross-checked (such as: reject attacks mixing keys and data through encrypt+unwrap-capable
dual-use keys [Clu03, 4]).

Since these interactions involve entire sets of attributes, they are not separately shown in Fig. 4.

e if an object is session-bound, its controlling session must be active (present) in the targeted backend

The PKCS+#11 notion of a “private object” — those bound to logged-in PKCS#11 sessions — map to EP11 sessions,
therefore we show a connection between sessions and PKCS+#11-derived restrictions.

e for functional use, the compliance mode of the object must match the then-current administrative compliance at-
tribute. (This, in turn, is a condensed representation of the full set of CPs.)

Objects must be allowed by each of these restrictions to become eligible for use. Failures are reported as a combination
of standard PKCS#11 errors, such as CKR_KEY_TYPE_INVALID, and some IBM-extended ones, mainly for CP-mandated
errors (which have no PKCS#11 equivalent).

To somewhat simplify policy/setup-induced error reporting, we distinguish between policy rejections which may be disabled
by CP changes, and failures where the responding backend can not be configured to accept that object. As an example,
a future backend removing support for deprecated algorithms would reject existing blobs of this deprecated types with the
latter policy rejection error.

Most of restrictions-enforcement is centralized: the backend uses a single unwrap_blob() service, which is responsible
for all context-independent checking. Since most restrictions may change at runtime, all checking is applied against the
then-current setup. As with Unix file-permission checking, once the services requested by a call are approved, it may be
allowed to complete, even if the setup changes after the check, during execution (which, under regular operations, does not
generally happen due to logistics/policy reasons).

The specific order of checking restrictions is not specified. We generally minimize unnecessary computation, therefore
restrictions which may be evaluated on plaintext-visible information — such as mechanisms — are applied before those
dependent on blob-plaintext (such as blob-internal stream state). We intentionally do not specify the specific order of
evaluation, since that may need to change when restrictions are added in the future.

We note here that a significant complexity of our regression suite is present only to ensure that specific usage-restriction
errors are encountered where expected. While constructing error cases is not very complicated, ensuring that CP and other
setup lets those invalid requests through to the targeted check, without triggering other errors, is quite complex. Recognizing
the futility of completing this manually, we constructed many of these compound conditions based on conditionals derived by
static analysis tools — note that BEAM, the IBM-developed static analyzer constructs compound statements immediately
suitable for turning into such erroneous conditions [Bra00, 7] [BBS06, 6].

7.1.7 Administrative services

Administrative services include “passive” queries and commands; the latter change state. Administrative queries, as their
non-administrative counterparts, are available to everyone capable of submitting requests.

Administrative commands belong to one of the following groups (SFR FMT_SMF.1):

1. Administrator management of card or domain administrators’ public keys (SFR FMT_MTD.1/Admin)
2. Key or state import/export (multiple, related commands, see Fig. 5). These key/state transport operations are
authenticated and change state.

Administratively managed import/export of state may include keys in encrypted form, their associated transport keys,
and other attributes (SFR FCS_CKM.2/Import, SFR FCS_CKM.2/Export).

State import/export uses an authenticated-encrypted enclosure for combining encrypted and clear regions, serialized
as a single non-modifiable unit (SFR FCS_COP.1/Backup_Enc, SFR FCS_COP.1/Backup_Int).
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Figure 5: Authentication and data flow during backup/restore operations, including backend migration

3. Generation and removal of importer private keys

4. Management of administrative attributes (non-functional restrictions), including signing thresholds
5. Management of control points (functional restrictions, for PKCS#11-equivalent services)

6. Zeroization of domains or card SFR FCS_CKM.4

7. Infrastructure management (real-time clock) (SFR FPT_STM.1)

As shown previously under authentication, administrators are identified through public keys, and signatures of a sufficient
number of administrators. Signature thresholds are an actively managed attribute, and require administrator co-signatures
to change. Lacking the required number of valid signatures—over the same request structure—forces rejection of admin-
istrative requests (SFR FIA_AFL.1). (We do not distinguish between the amount of rejected signatures when rejecting a
request; each request and its signatures are considered in isolation SFR FIA_AFL.1).

Administrators are grouped into two hierarchical levels, card-level administrators managing shared infrastructure — such as
the single clock — and domain administrators, and domain administrators managing domain settings.

Card-level administrators may supply signatures for domain commands, but the converse is not true.

Administrative commands changing state, with two exceptions, must be signed, with either a single signature, or a threshold
number of signatures. (The choice of limit depends on command type.) Some of the services have a switchable threshold,
and a single signature may suffice for an otherwise threshold-signed command. Unsigned administrative commands are
provided for two commit operations which may be performed without explicit administrative operations; host infrastructure
is allowed to issue them, and therefore they do not require authentication.
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7.1.8 Selftests

During startup, or upon demand, a set of known-answer tests are executed. Failure prohibits subsequent cryptographic
operations, and may be remedied by restarting the module. If the failure persists, the host — typically, driver infrastructure
— must manage replacement or retries, and the TOE is no longer involved. (SFR FPT_TST.1, SFR FPT_FLS.1)

7.1.9 Audit

Security-relevant operations within the TOE are audited through an HSM-resident audit subsystem, based on a hash chain.
Audit records form a logical sequence immune to insertion or deletion, inheriting the non-malleability of hash chains [SK99,
3] [Woul2, 6.2.4] [MA14, 5.4]. This property allows us to make statements about audit-chain security, even if the audit
chain itself is eventually maintained outside the TOE (SFR FAU_STG.1). (The module retains only the most recent entries,
and provides context fields such as sequence numbers, for their unambiguous identification.)

Audit records may contain fields which are public, and indirect, non-sensitive information derived from keys, but NEVER
sensitive values. Indirect information, such as types, sizes, or truncated hashes of keys, MAY be logged. This is not a simple
policy-driven restriction: the audit-event format simply lacks fields to contain/log sensitive data. (The only non-public
key parameter logged, key checksum, follows PKCS#11 key-checksum rules, revealing a 24-bit truncated hash based on
sensitive values.)

Audit records, when queried through non-administrative query, are returned without additional signatures. Administrative
query responses are returned digitally signed, signing the same audit-record content, when requested. The signed, adminis-
trative audit-query is added to provide digitally signed, individually verifiable entries of the same hash chain. Both queries
are available to any host entity (SFR FAU_SAR.1); host environments, outside the scope of the TOE, SHOULD supply
tooling to parse and manage audit records (SFR FAU_SAR.1).

Audit events are output from the TOE for external storage. Since administrative responses include then-current administra-
tive state, including transaction counters, all signed audit events may be unambiguously ordered and verified, and interpreted
even in isolation. (Other than adding digital signatures, the administrative query signs the same event records. The signed,
administrative audit-query is added to provide digitally signed, individually verifiable entries of the same hash chain.)

The audit scheme is designed to provide full accountability of TOE-internal operations which may be verified by external
parties ([MA14, 3] “Retention and disclosure”), and provide all necessary context to interpret logs even without access to
the originating module. Since the necessary context includes both time and sequence number, logical reconstruction of audit
streams does not require the cooperation of any other entity [MA14, 5.1]. With module-specific identification, multiple
audit streams aggregated to a single compound are expected to be easily processable even in a large system aggregating
billions of entries — practically within reach of even modest desktop systems as of this writing [SMZ14, 3.3].

The following events — among others — all generate audit records (SFR FAU_GEN.1):

1. Startup and shutdown of the TOE, and that of relevant subsystems — including audit functionality itself

2. Original and updated time of the TOE, when the corresponding administrative command updates the — module-global
— time

3. Completion of selftests
4. Import of keys or key components (see key-audit records below) (a state-changing action)
5. Export of keys or key components (a state-changing action)

6. Destruction of HSM-resident keys (a state-changing action)
Note that the stateless nature of PKCS#11 makes it impossible to audit destruction of host-resident objects.

7. Startup and recovery from detected failures of TSF (SFR FPT_FLS.1)
Among other attributes, each audit record includes at least the following metadata:

1. Sequence number of the audit event (SFR FAU_GEN.1)
2. Audit-instance identifier of the event log, allowing disambiguation even if the hosting HSM is zeroized

3. Time of the audit event, as reported by the HSM system clock

N

. Type of event
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5. Identity of the triggering session — if applicable — or the relevant administrator public key [in truncated form]
6. Identity — such as PKCS#11 checksum or public-key hash — of the key or keys involved in an event-relevant operation

7. HSM-generated salt of at least 96 bits, to prevent the host from advancing the audit hash chain in a fully host-
controlled manner

Since software updates are prohibited by the current security target, audit capabilities related to updates do not apply to
— are not expected to be encountered during operation of — the TOE.

To reliably frame the time reference around TOE time changes, two audit events are generated when the administrative
command is issued. Both original and updated time are logged. Note that since the audit sequence number is not changed
during time changes, the audit chain may be reliably reconstructed even in such cases. Sequence number tracking and
forward integrity provided by the audit hashchain allows interested entities to establish “known good” synchronization
points in each audit chain. Similar checkpointing is routinely used by large hashchain-based, publicly verifiable integrity
proofs to allow long hashchain history [dcd14].

Since the audit subsystem is only observed, but not explicitly managed or controlled by any host entity, there are no
additional TOE requirements for their protection. Therefore, security management of audit storage is not applicable to the
TOE. Since the audit flow is based on hash chains, even untrusted hosts may manage audit records in a trustworthy and
secure manner, assuming modifications may be detected by any other “auditor” (SFR FAU_STG.4). This approach assumes
that anyone may query audit contents, an approach known to work for management of trust root certificates [LLK13, 3].

Non-administrative audit queries return raw audit events, without card-generated digital signatures. While these audit events
are not signed, they are aggregated through a non-malleable hash chain. The TOE manages a single hash chain internally,
and relies on the host reassembling hash chains, aggregating chains for multiple backends, and providing audit facilities for
the entire audit trail.

Since the TOE relies on the host storing keys and sensitive state during regular operations, one may not meaningfully audit
object destruction. Therefore, audit events related to non-administrative object removal are limited to TOE-internal objects,
such as retained keys.

Audit entries bind several of their context-related fields to an entry-embedded pseudo-random function field (PRF). The
truncated PRF output, obtained from a SipHash invocation [AB12], is added only to add some internal structure to hash
states. The implied additional constraints on intra-block consistency possibly increase hash-search complexity at a modest
per-block cost [Stel3, 2.4] [SBKT17, 5.5] [LWC18, 4]. A PRF invocation is inserted since audit-entry content—i.e., hash-
state-advancing content—may include host-provided or host-influenced data.

Data structures of the audit subsystem are not visible to the host, and no service provides access to them. If the core data
structure is ever corrupted, a new audit chain is started, logging the time when this condition has been encountered 8.3.3.
Initial startup, when a new audit chain is started without finding a previous structure is not separately reported, although
the initial state will be obvious (sequence number starts at 0).

7.1.10 Random-number generation

The TOE shall generate random streams with a cryptographically strong random number generator. The hybrid random-
number generation process is based on hardware-provided “true-random” (TRNG) seeds, conditioned and then post-
processed with a stateful pseudo-random generator (DRNG). Random numbers for direct or indirect use of functional
or administrative calls are provided from the DRNG. (SFR FCS_RNG.1)

The TOE obtains TRNG seed from HSM-internal entropy source, “conditioned” by TOE software through a cryptographic
hash function — SHA-256 — after min-entropy estimation and rate limiting.

The combination of a conservative entropy-estimator and cryptographic hash function generates “compressed”, condition-
alized seed blocks in 256-bit increments, which are maintained in an entropy pool aggregating past history. Since the
entropy-estimator is conservative, and pool compression to 256 bits is only allowed with 512+ bits of apparent min-entropy,
conditionalized TRNG output is assumed to provide 256 full bits of entropy per call (Fig. 6) [BK12, 6.4.2]. Rate limitation
prevents entropy compression until at least 512 bytes of the input pool changed since the last compression, preventing
iterative guessing of smaller units of entropy [FS03, 10.2] [KSF99, 3.2] [Str16, 3.1].

The pseudo-random generator is based on a non-invertible, cryptographic hash function (SHA-256), instantiating the DRBG
structure from [ISO11, C.2.1.1], which conforms to DRG.3 requirements [KS11, 4.9.1] as described in Example 39 of [KS11,
5.6.2]. The DRNG is seeded by maximum-length entropy — 256-bit blocks — from internal, conditioned seed, and maintains
state with up to 256 bits of entropy.

Instantiated as a single hybrid RNG [KS11, 4.2], different callers within the TOE obtain their own slices of the generated
DRNG stream. TRNG-based reseeding is automatic, and it is not influenced by external entities in the TOE configuration.
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Figure 6: Hybrid random-number generation, data flow

7.1.11 Additional functionality

Secure storage The TOE manages its persistent structures through integrity-checked storage, storing structures as plain-
text under TOE control. TOE-internal storage is not encrypted by the TOE itself, but the instantiation form may provide
such additional encryption, such as when deployed within IBM HSMs.

Storage controlled by the TOE includes persistent-data structures, heap-allocated global objects, and request-transient
stack data. Memory regions which MAY contain sensitive data are wiped at the earliest possible point, before they are
released (SFR FDP_RIP.2). (Note that development uses QA tooling specialized to scan memory-lifecycle events for un-
intended leaks of sensitive data, particularly WKs and blob-cleartext patterns which would be indicative of plaintext not
cleared before deallocation.)

Key virtualization Segmentation of keystores based on trust root, application identity, or their combination. Virtualization
associates key material with a controlling “session”, deriving a unique encryption key for objects bound to each different ses-

sion. Host-resident state objects or keys reference their controlling session implicitly, as part of their object header. (SFR
FIA_USB.1/1U)

Derived encryption keys are discarded upon use, and are not retained within the TOE when the originating request terminates.
(Note that the controlling WK and the session identifier are obviously still present in memory, even if any derived key material
has been discarded.)

Protection against physical attacks Physical protection is inherited from the enclosure.

Note that we describe a TOE which excludes hardware threats. Tamper-protection capabilities are only mentioned here
for completeness; we assume physical protection on a best-effort basis without formal classification. (We acknowledge
physical protection afforded by the hosting HSM, but only as an environmental feature.)

8 Support notes

8.1 Specification of full TOE configuration

Configuration identifiers are 256-bit cryptographic hashes (SHA-256).

On IBM model 4768 HSMs, the configuration of segments is as follows:
. Enterprise PKCS#11: 2b638e8e-T4ec55f7 8477a357 9331f437 db66b9d5 3523ecbb al377420b 7b9fd046
. Segment 3: 7ce8e3c2-e5988088 62e9cda8 ebacff4f 9eb58eb9 87bdleff dOa7dbea 46e2e02c

1
2
3. Segment 2: b7961613-dae86fe5 301054d7 3ble24c6 764dfb28 45e7edb3 fc04fc0l e25bcbde
4. Segment 1: d608bcad-ec5513fd a6f6a026 03£241c9 dd935178 b2d07745 54089693 f7bbcbe3

See also Fig. 1. Segment 0 is non-modifiable, therefore its configuration is not included here (it is the same for all 4768
modules).
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The above Segment 3 hash implies the EP11 configuration, as this particular EP11 version is embedded within Segment 3.
Both are listed here since infrastructure and application counterparties may check the API version, segment configuration,
or both.

8.2 Function calls

The following top-level calls of PKCS#11 are implemented within EP11, and are available within the TOE:

1 m_Decrypt

2 m_DecryptFinal

3 m_DecryptInit

4 m_DecryptSingle........... addition (DecryptInit + Decrypt)
5 m_DecryptUpdate

6 m_DeriveKey

7 m_Digest

8 m_DigestFinal
9 m_DigestInit
10 m_DigestKey

11 m_DigestSingle............ addition (DigestInit + Digest)
12 m_DigestUpdate

13 m_Encrypt

14 m_EncryptFinal

15 m_EncryptlInit

16 m_EncryptSingle........... addition (EncryptInit + Encrypt)
17 m_EncryptUpdate

18 m_GenerateKey

19 m_GenerateKeyPair

20 m_GenerateRandom

21 m_GetAttributeValue
22 m_GetMechanismInfo
23 m_GetMechanismList
24 m_Login................... modified
256 m_Logout.................. modified

26 m_SeedRandom

27 m_SetAttributeValue
28 m_Sign

29 m_SignFinal

30 m_SignInit

31 m_SignSingle.............. addition (SignInit + Sign)
32 m_SignUpdate
33 m_UnwrapKey............... modified

34 m_Verify
35 m_VerifyFinal

36 m_Verifylnit

37 m_VerifySingle............ addition (VerifyInit + Verify)
38 m_VerifyUpdate

39 m_WrapKey................. modified

40 m_admin.............0000... addition

41 m_get_xcp_info............ addition

Single-pass nnnSingle () calls are functionally equivalent to nnnInit () immediately followed by a terminating nnn () call,
without returning intermediate state, for each applicable category of nnn. They are supported to reduce the number of
roundtrips for this frequently encountered calling pattern; the combined calls provide no additional functionality (but bypass
intermediate-state management and one host-module call).

Non-administrative queries specific to EP11 are supplied through a single, non-PKCS#11 query, get_xcp_info, with mul-
tiple sub-queries. Certain sub-query responses are usable by host code to provide PKCS#11-related information for host
libraries, which may be used for simpler transformation between PKCS#11 and EP11 calls — as an example, upper bounds
on blob sizes are reported here. Most other sub-queries — such as audit records and history — have no PKCS#11 equivalent.
On-demand algorithm tests may also be invoked as a sub-query.

While the TOE implementation of session management — Login and Logout — differs from PKCS#11 due to the dif-
ferent interpretation of sessions and user identities, the interface itself is identical. (The TOE simply maps host-provided
authentication data into integrity-checked session identifiers, which may be then exported back to untrusted hosts. These
identifiers operate as regular PKCS#11 authentication context otherwise.)

Administrative calls are dispatched from the single m_admin service, which — dealing with quantities not present in PKCS#11
itself — has no PKCS#11 equivalent. The service provides both queries and commands.

The addition of attribute-bound transportation modifies the interface of regular PKCS#11 WrapKey () and UnwrapKey ().
Host code may trivially remap regular PKCS#11 calls to our expanded interface; callers of PKCS#11 Un/WrapKey () need
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not be aware of the extension interface (most importantly, the additional authentication key: unlike PKCS#11, attribute-
bound transport is encrypted+authenticated).

State-related PKCS#11 calls missing from EP11 have no equivalent in a stateless PKCS#11 implementation, and therefore
do not exist within the TOE itself. Host libraries are expected to simulate object-list traversal, session-state queries, and
other state-related PKCS+#11 services.

8.3 Control points and attributes

Control points restrict specific capabilities within a domain. They are represented in an array of individual CP bits (“CPBs"),
with a set bit enabling the capability. Future additions will preserve this positive-active logic, therefore zero-extending a set

of CPs from a previous release to a more recent version will remain a safe operation. CPs are administratively managed
(SFR FMT_MTD.1/CP).

The following CPBs influence core infrastructure:

e Allow addition/activation of CPBs (ADD_CPBS). A separate CPB allows removal of CPBs (RESTRICT_CPBS).

To make the setup read-only, deactivate both of these CPBs. Removing only addition, but not deletion, turns the setup into a
form that may be further restricted, but missing capabilities may no longer be activated.

e Allow the backend to save blobs as semi-retained keys (RETAINKEYS), which are no longer exportable.
Note that this setting does not influence key caching, which may not be externally controlled, and is host-opaque.

e Allow modification of object attributes (MODIFY_OBJECTS). Removing this attribute makes all objects read-only.

Note that currently, only Boolean attributes may be modified; non-Boolean attributes including key type, size etc. are never
modifiable (SFR FMT_MSA.1/Key_Man_1 vs. SFR FMT_MSA.1/Key_Man_2).

e Allow mixing of external seed to the backend, if it is supported (RNG_SEED).
e Allow generating asymmetric keys without selftests upon key generation (SKIP_KEYTESTS).

The following control points influence groups of functionality:

e Allow signing with asymmetric (private) keys, symmetric keys (SIGN_ASYMM, SIGN_SYMM) or verification with symmetric keys
(SIGVERIFY_SYMM).

Note that one can not restrict signature verification with public keys, which are available to the host.

e Allow encryption of data with with symmetric keys (ENCRYPT_SYMM), decryption with symmetric or asymmetric ones (DECRYPT_SYMN,
DECRYPTJ\SYMM) .

Encryption with public keys can not be prevented, therefore there is no such CPB. (Note that wrapping keys is separately
controlled.)

e Allow generation of symmetric or asymmetric keys (KEYGEN_SYMM, KEYGEN_ASYMM).
e Allow wrapping keys with symmetric or asymmetric keys (WRAP_SYMM, WRAP_ASYMM).
e Allow unwrapping keys with symmetric or asymmetric keys (UNWRAP_SYMM, UNWRAP_ASYMM).

e Allow cryptographic strength windows: below 80 bits, 80 to below-112, 112 to below-127, 128 to below-192, 192 to below-256,
or 256-bit (KEYSZBELOWSOBIT, KEYSZ_80BIT, KEYSZ_112BIT, KEYSZ_128BIT KEYSZ_192BIT, KEYSZ,256BIT).

e Allow algorithms not allowed by NIST or BSI rules of a specific date (ALG_NFIPS2009, ALG_NBSI2009, ALG NFIPS2011,
ALG,NBSI2011)

These CPBs control entire sets of algorithms. They may be further restricted.
The following CPBs are specific to algorithms or other PKCS#11-level functionality:
e Allow keywrapping without attribute-binding (NON_ATTRBOUND). This CPB must be set for standard PKCS#11 key transport,
which uses key forms without attributes.
e Allow raw — unpadded — RSA operations (ALG_RAW_RSA)
o Allow HMAC keys below the minimum FIPS-198 keysize (half of state size) (KEYSZ_HMAC_ANY)

o Allow RSA public keys below 2'°+1 (KEYSZ_RSA65536). This restriction corresponds to the lower limit introduced by FIPS 186-4
(at the end of 2010).

e Allow functional use of RSA, DSA, Diffie-Hellman or elliptic curves (ALG_RSA, ALG_DSA, ALG_DH, ALG_EC)
e Allow EC operations over NIST or Brainpool (E.U.) curves (ALG_EC_NISTCRV, ALG_EC_BPOOLCRYV).

e Allow non-administrators to set objects’ CKA_TRUSTED attribute, which in turn allows export of keys restricted to transport with
trusted keys (USER_SET_TRUSTED). Note that non-administrator-controlled TRUSTED attributes are inherently unsafe, and need
proper privilege separation on the host.
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e Allow creation/use of keys which can un/wrap and en/decrypt simultaneously (WRAP_CRYPT_KEYS). Similar restrictions are
possible to prevent sign/verify and and en/decrypt SIGN_CRYPT_KEYS) or un/wrap and sign/verify (WRAP_SIGN_KEYS). The CPs
apply to all combinations of symmetric and asymmetric keys.

These restrictions, when enforced, prevent compromise of key material through misuse of blob attributes, such as mixing
encrypted keys and data [BCFS10, Clu03]. Adding such restrictions prevents the entire category of such attacks.

Control point restrictions are cumulative: all applicable CPs must be enabled for an affected operation to succeed. (SFR
FDP_ACF.1/OSA) Error reports indicating a policy-originated rejection are not — currently — specific about which CP has
caused the request to be rejected.

8.3.1 Control points list

XCP_CPB_ADD_CPBS 0 allow addition (activation) of CP bits
XCP_CPB_DELETE_CPBS 1 allow removal (deactivation) of CP bits
remove both ADD_CPBs and DELETE_CPBs
to make unit read-omnly

XCP_CPB_SIGN_ASYMM 2 sign with private keys
XCP_CPB_SIGN_SYMM......... 3 sign with HMAC or CMAC
XCP_CPB_SIGVERIFY_SYMM 4 verify with HMAC or CMAC
XCP_CPB_ENCRYPT_SYMM 5 encrypt with symmetric keys

-- No asymmetric counterpart: one

-- may not restrict use of public keys
XCP_CPB_DECRYPT_ASYMM 6 -- decrypt with private keys
XCP_CPB_DECRYPT_SYMM........ 7 -- decrypt with symmetric keys
XCP_CPB_WRAP_ASYMM 8 -- key export with public keys
XCP_CPB_WRAP_SYMM 9 -- key export with symmetric keys
XCP_CPB_UNWRAP_ASYMM 10 -- key import with private keys
XCP_CPB_UNWRAP_SYMM......... 11 -- key import with symmetric keys
XCP_CPB_KEYGEN_ASYMM 12 -- generate asymmetric keypairs
XCP_CPB_KEYGEN_SYMM 13 -- generate or derive symmetric keys

-- including DSA parameters
XCP_CPB_RETAINKEYS 14 -- allow backend to save semi/retained keys
XCP_CPB_SKIP_KEYTESTS....... 15 -- disable selftests on new asymmetric keys
XCP_CPB_NON_ATTRBOUND 16 -- allow keywrap without attribute-binding
XCP_CPB_MODIFY_OBJECTS 17 -- allow changes to objects (Booleans only)
XCP_CPB_RNG_SEED 18 -- allow mixing external seed to RNG
XCP_CPB_ALG_RAW_RSA......... 19 -- allow RSA private-key use without padding

-- (highly discouraged)

20 -- allow non-FIPS-approved algs (as of 2009)

-- including non-FIPS keysizes
21 -- allow non-BSI algorithms (as of 2009)

-- including non-FIPS keysizes
XCP_CPB_KEYSZ_HMAC_ANY 22 -- don’t enforce minimum keysize on HMAC
XCP_CPB_KEYSZ_BELOW8OBIT....23 -- allow algorithms below 80-bit strength

-- public-key operations are still allowed
24 -- allow 80 to 111-bit algorithms

XCP_CPB_ALG_NFIPS2009

XCP_CPB_ALG_NBSI2009

XCP_CPB_KEYSZ_80BIT

XCP_CPB_KEYSZ_112BIT 25 -- allow 112 to 127-bit algorithms
XCP_CPB_KEYSZ_128BIT 26 -- allow 128 to 191-bit algorithms
XCP_CPB_KEYSZ_192BIT........ 27 -- allow 192 to 255-bit algorithms
XCP_CPB_KEYSZ_256BIT 28 -- allow 256-bit algorithms
XCP_CPB_KEYSZ_RSA65536 29 -- allow RSA public exponents below 0x10001
XCP_CPB_ALG_RSA 30 -- RSA private-key or key-encrypt use
XCP_CPB_ALG_DSA............. 31 -- DSA private-key use
XCP_CPB_ALG_EC 32 -- EC private-key use, see also

-- curve restrictions
XCP_CPB_ALG_EC_BPOOLCRV 33 -- Brainpool (E.U.) EC curves
XCP_CPB_ALG_EC_NISTCRV 34 -- NIST/SEC EC curves
XCP_CPB_ALG_NFIPS2011....... 35 -- allow non-FIPS-approved algs (as of 2011)

-- including non-FIPS keysizes
36 -- allow non-BSI algorithms (as of 2011)

-- including non-BSI keysizes
XCP_CPB_USER_SET_TRUSTED 37 -- allow non-admins to set TRUSTED on a blob/SPKI
XCP_CPB_ALG_SKIP_CROSSCHK 38 -- do not double-check sign/decrypt ops
XCP_CPB_WRAP_CRYPT_KEYS..... 39 -- allow keys which can en/decrypt data

XCP_CPB_ALG_NBSI2011
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-- and also un/wrap other keys

XCP_CPB_SIGN_CRYPT_KEYS 40 -- allow keys which can en/decrypt data
-- and also sign/verify
XCP_CPB_WRAP_SIGN_KEYS 41 -- allow keys which can un/wrap data

-- and also sign/verify
XCP_CPB_USER_SET_ATTRBOUND 42 -- allow non-administrators to

-- mark public key objects ATTRBOUND
XCP_CPB_ALLOW_PASSPHRASE....43 -- allow host to pass passphrases, such as

—-- PKCS12 data, in the clear
XCP_CPB_WRAP_STRONGER_KEY 44 -- allow wrapping of stronger keys

-- by weaker keys
XCP_CPB_WRAP_WITH_RAW_SPKI 45 -- allow wrapping with SPKIs without

-— MAC and attributes
XCP_CPB_ALG_DH 46 -- Diffie-Hellman use (private keys)
XCP_CPB_DERIVE 47 -- allow key derivation (symmetric+EC/DH)

8.3.2 Key/object attributes

The following set of usage restrictions is available within key objects, including encrypted objects and authenticated public
keys. Restrictions are generally enforced as their PKCS#11 counterparts are; some additional restrictions are specific to
Enterprise PKCS#11 firmware.

BLOB_EXTRACTABLE -- may be encrypted by other keys.
-- May not be reset to EXTRACTABLE, once
-- made NON-EXTRACTABLE
BLOB_NEVER_EXTRACTABLE -- set if key was created non-extractable.
-- Set only initially, may not be modified

BLOB_MODIFIABLE -- attributes may be changed
BLOB_NEVER_MODIFIABLE -- object was created read-omnly.
-- Set only initially, may not be modified
BLOB_RESTRICTABLE -- capabilities may be removed, but may not be
-- made more permissive.
BLOB_LOCAL -- key was created inside this CSP,

-- was not imported. Set upon object
-- creation; may not be modified.
BLOB_ATTRBOUND -- may be transported only in attribute-bound
-- formats, but not standard PKCS11 ones.
-- May not be modified.
BLOB_USE_AS_DATA -- raw key bytes may be input
-- to other processing as data,
-- such as hashed, or deriving
-- keys from them.
BLOB_SIGN -- may generate signatures
BLOB_SIGN_RECOVER -- may generate (asymmetric)
-- signatures with message recovery
BLOB_DECRYPT
BLOB_ENCRYPT
BLOB_DERIVE

BLOB_UNWRAP -- may decrypt (transport) other keys
BLOB_WRAP -- may encrypt (transport) other keys
BLOB_VERIFY
BLOB_VERIFY_RECOVER -- may verify signatures and recover

-- signed messages (asymmetric only)
BLOB_TRUSTED -- allowed to operate on TRUSTED-only keys
BLOB_WRAP_W_TRUSTED -- note: _TRUSTED enforcement does not

-- provide security guarantees. We only

-- track it inside the HSM to assist hosts.
BLOB_RETAINED -- backend, not (no longer) on host
BLOB_ALWAYS_RETAINED -- key has been generated inside, never

-- left the hosting module

Note that, as noted above, the management of TRUSTED attributes provides no additional security beyond host-based
enforcement. The attribute is tracked within object attributes only to simplify host libraries.
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8.3.3 Audit event listing

In addition to generic audit categories, the following specific event identifiers are reserved:

XCP_LOGSPEV_TRANSACT_ZEROIZE Oxffff0001 --

XCP_LOGSPEV_KAT_FAILED Oxf£££0002 --
XCP_LOGSPEV_KAT_COMPLETED 0xf£££0003 --
XCP_LOGSPEV_EARLY_Q_START..... 0xf£££0004 --
XCP_LOGSPEV_EARLY_Q_END Oxf£££0005 --

XCP_LOGSPEV_AUDIT_NEWCHAIN 0xf£££0006 --

XCP_LOGSPEV_TIMECHG_BEFORE 0xf£££0007 --
XCP_LOGSPEV_TIMECHG_AFTER..... 0xf£££0008 --
XCP_LOGSPEV_MODSTIMPORT_START Oxffff0009 --

XCP_LOGSPEV_MODSTIMPORT_FAIL Oxffff000a --

XCP_LOGSPEV_MODSTIMPORT_END  Oxffff000b --

pending transaction forced module
to zeroize (such as: import failed
in inconsistent intermediate state)
algorithm known-answer tests failed
algorithm known-answer tests passed
start of early-audit events:
subsequent events have proper order,
approximate time

end of early-audit events:
subsequent events include exact time
audit chain was corrupted; removed,
generating new instance,

starting new chain

time change: original time

time change: updated time

accepted full-state import

data structure, starting update
rejected import structure

issued after initial verify
indicates some inconsistency

of import data structures

completed full-state import

Note that some of the initial events, since they are issued during startup, where not all of infrastructure is available. As
documented in design rationale, these events are logged in chronological order only, but lack certain details of the audit chain

state. Event-record regains full context, once all required infrastructure has been initialized.
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9 Glossary
Administrator commands are administrative requests requiring authentication—the latter provided through digital signa-
tures.

Blob informal term for host-resident, authenticated-encrypted, opaque, binary objects stored in host-based keystores. These
“sensitive” objects are created by EP11 modules; their internals are not host-readable.

CP Control Point, administratively controlled sets of restrictions which enable/disable specific [groups] of functionality

CCPs are card configuration parameters, security-critical configuration state of a module, not sensitive. Such critical
information includes segment code and ownership (i.e., officer public keys).

CSP Critical security parameter. (To reduce chance of confusion, “cryptographic service provider” is always expanded,
never abbreviated in the text.)

Domain name of partitions within EP11 modules. Each domain maintains its own administrative settings and key material.

Driver-based access control on hosts, outside the scope of this security target, is generally based on domains.

EP11 Abbreviation of IBM Enterprise PKCS#11, IBM-specific instantiation of an industry-standard PKCS#11 crypto
service provider API

Firmware identifier is an unambiguous, assumed-unique status identifier. We use cryptographic hashes of contents to
derive identifiers of at least 256 bits, and assume collisions to be infeasible.

Components are identified by their own segment hashes. Compounds derive identifiers unambiguously. Since we
assume unicity of hashes, verifying a top-level compound identifier is sufficient to implicitly identify its constituent
components.

FWID Abbreviation of Firmware identifier
KAT Known Answer Test
MCPU Module CPU, the processor executing operating system and application code (cf. SSP)

OA Outbound Authentication, infrastructure capable of signing by card-resident, non-exportable private keys.

External parties, including other modules, can verify that signed content has been generated by untampered module
firmware (Segment 1). An extension allows OA to manage private keys for OS or applications (Segment 2 or 3).

PCle PCl Express, the external interface of our module.
POST Power-On Self-Test, infrastructure tests resident in ROM and flash.
RAS Abbreviation of Reliability, Availability, Serviceability

Session The TOE can bind objects to sessions. Users in possession of the valid session PIN can access those objects. The
session PIN is therefore considered an authentication means for “session users”.

SKI SubjectKeyIdentifier, an “assumed-unique” identifier of a public key, generally, a hash of a key-unique parameter.
We follow a standard solution, and calculate a hash of the BIT STRING subjectPublicKey of the SPKI [RHPFS02,
4.2.1.2]. We currently use SHA-256 as a hash function.

SPKI SubjectPublicKeyInfo, a collection of self-describing, industry standard binary formats for public keys. SPKI
structures contain type information, unambiguously identifying key types and parameters. RSA SPKIs are described
in [SKHO5, 1.2], EC ones in [TBY 109, 2.1].

SSP Security Service Processor, a dedicated processor executing Miniboot and most of POST (i.e., infrastructure code).

WK Wrapping Key, our terminology for domain-specific keys encrypting an externally stored keystore

50



IBM Enterprise PKCS#11 vi, rev. 288, 2019-03-20 20:59:40Z

Security Target doc. tree state: 3dd4d9e83607
References
[AB12] Jean-Philippe Aumasson and Daniel J. Bernstein. SipHash: a fast short-input PRF. In Steven D. Galbraith

[Ame01]

[Ame05]

[BB12]

[BBS06]

[BCFS10]

[BJR*14]

[BK12]

[BK15]

[BNOS]

[Bra00]

[BSI08]

[Clu03]

[dcd14]

[FIPO1]

[FS03]

[GIJ*+12]

[HDO9]

[HS02]

and Mridul Nandi, editors, Progress in Cryptology - INDOCRYPT 2012, 13th International Conference on
Cryptology. Proceedings, volume 7668 of Lecture Notes in Computer Science, pages 489-508. Springer, 2012.

American Bankers Association. ANSI x9.63-2001, Elliptic Curve Key Agreement and Key Transport Protocols,
2001.

American Bankers Association. ANSI x9.62-2005, The Elliptic Curve Digital Signature Algorithm (ECDSA),
2005.

William C. Barker and Elaine Barker. Recommendation for the Triple Data Encryption Algorithm (TDEA)
Block cipher (NIST Special Publication 800-67, revision 1). National Institute of Standards and Technology
(NIST), January 2012.

Daniel Brand, Marcio Buss, and Vugranam C. Sreedhar. Evidence-based analysis and inferring preconditions
for bug detection (IBM Research report RC24103). Technical report, IBM Research, October 2006.

Matteo Bortolozzo, Matteo Centenaro, Riccardo Focardi, and Graham Steel. Attacking and fixing PKCS#11
security tokens. In Proceedings of the 17th ACM Conference on Computer and Communications Security
(CCS’10), pages 260-269, Chicago, lllinois, USA, October 2010. ACM Press.

Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz Khurshid, and Vitaly Shmatikov. Using Frankencerts for
automated adversarial testing of certificate validation in SSL/TLS implementations. In Proceedings of the 35th
IEEE Symposium on Security & Privacy (SOSP’14), San Jose, CA, May 2014.

Elaine Barker and John Kelsey. Recommendation for the Entropy Sources Used for Random Bit Generation
(NIST Special Publication 800-90B, Draft). National Institute of Standards and Technology (NIST), August
2012.

Elaine Barker and John Kelsey. Recommendation for Random Number Generation using Deterministic Random
Bit Generators (NIST Special Publication 800-90A, revision 1). National Institute of Standards and Technology
(NIST), June 2015.

Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions and analysis of
the generic composition paradigm. Journal of Cryptology, 21(4):469-491, September 2008.

Daniel Brand. A software falsifier (IBM Research report RC21788). Technical report, IBM Research, October
2000.

Bundesamt fiir Sicherheit in der Informationstechnik (BSI). Common Criteria Protection Profile, Cryptographic
Modules, Security Level “Enhanced” (BSI-CC-PP-0045-2009, v1.01), July 2008.

Jolyon Clulow. On the security of PKCS#11. In In Proceedings of the 5th International Worshop on
Cryptographic Hardware and Embedded Systems (CHES'03), Volume 2779 of LNCS, pages 411-425. Springer-
Verlag, 2003.

Bitcoin  developer community  discussion. (Bitcoin)  checkpoint  lockin. online at
en.bitcoin.it/wiki/Checkpoint_Lockin, June 2014. [accessed 2017-07-09].

National Institute of Standards and Technology (NIST). Security Requirements for Cryptographic Modules
(FIPS 140-2), 2001.

Niels Ferguson and Bruce Schneier. Practical Cryptography. John Wiley & Sons, Inc., New York, NY, USA, 1
edition, 2003.

Martin Georgiev, Subodh lyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and Vitaly Shmatikov. The most
dangerous code in the world: Validating SSL certificates in non-browser software. In Proceedings of the 19th
ACM Conference on Computer and Communications Security (CCS'12), Raleigh, NC, October 2012.

Russell Housley and Morris Dworkin. RFC 5649: Advanced encryption standard (AES) key wrap with padding
algorithm, August 2009.

Russell Housley and Jim Schaad. RFC 3394: Advanced encryption standard (AES) key wrapping algorithm,
September 2002.

51



IBM Enterprise PKCS#11 v1, rev. 288, 2010-03-20 20:50:40Z
Security Target doc. tree state: 3dd4d9e83607

[ICS16]

[ICS18]

1S011]
[JK03]

[Kra01]

[KS11]

[KSF99]

[LLK13]

[LM10]

[LWC18]

[MA14]

[Mur08]

[Nat99]
[Nat01a]
[Nat01b]

[Nat12]
[Nat13a]

[Nat13b]

[PKCO4]
[PKCOY]
[PKC14]
[RHPFS02]

[SBK*17]

[SEC10]

IBM. z/0S Cryptographic Services Integrated Cryptographic Service Facility—Writing PKCS#11 Applications
(v2r3, SC14-7510-04), October 2016.

IBM. z/OS Cryptographic Services Integrated Cryptographic Service Facility—Administrator’s Guide (v2r3,
5C14-7506-06), January 2018.

ISO/IEC 18031:2011, Information technology, security techniques, random bit generation, 2011.

Jakob Jonsson and Burt Kaliski. RFC 3447: Public-key cryptography standards (PKCS) #1: RSA cryptography
specifications version 2.1, February 2003.

Hugo Krawczyk. The order of encryption and authentication for protecting communications (or: how secure is
SSL?). In Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference, pages
310-331. Springer-Verlag, 2001.

Wolfgang Killmann and Werner Schindler. A proposal for: Functionality classes for random number generators.
Technical report, Bundesamt fiir Sicherheit in der Informationstechnik (BSI), September 2011.

John Kelsey, Bruce Schneier, and Niels Ferguson. Yarrow-160: Notes on the design and analysis of the
Yarrow cryptographic pseudorandom number generator. In In Sixth Annual Workshop on Selected Areas in
Cryptography, pages 13-33. Springer, 1999.

Ben Laurie, Adam Langley, and Emilia Kasper. RFC 6962: Certificate transparency, June 2013.

Manfred Lochter and Johannes Merkle. RFC 5639: Elliptic curve cryptography (ECC) Brainpool standard
curves and curve generation, March 2010.

Fukang Liu, Gaoli Wang, and Zhenfu Cao. Improved collision attack on reduced RIPEMD-160. Cryptology
ePrint Archive, Report 2018/509, eprint.iacr.org/2018/509, May 2018. [accessed 2018-05-28].

Stephen J. Murdoch and Ross Anderson. Security protocols and evidence: Where many payment systems fail. In
Proceedings of Financial Cryptography and Data Security - 18th International Conference, FC'2014, Barbados,
volume 7859 of Lecture Notes in Computer Science. Springer, March 2014,

Steven J. Murdoch. Hardened stateless session cookies. In Bruce Christianson, James A. Malcolm, Vashek
Matyas, and Michael Roe, editors, Security Protocols Workshop, volume 6615 of Lecture Notes in Computer
Science, pages 93-101. Springer, 2008.

National Institute of Standards and Technology (NIST). Data Encryption Standard (FIPS 46-3), 1999.
National Institute of Standards and Technology (NIST). Advanced Encryption Standard (FIPS 197), 2001.

National Institute of Standards and Technology (NIST). Recommendation for Block Cipher Modes of Operation
(800-38A), 2001.

National Institute of Standards and Technology (NIST). Secure Hash Standard (FIPS 180—4), March 2012.

National Institute of Standards and Technology (NIST). Digital Signature Standard (DSS) (FIPS 186-4), July
2013.

National Institute of Standards and Technology (NIST). Recommendation for Pair-Wise Key Establishment
Schemes Using Discrete Logarithm Cryptography (SP800-56A rev.2), May 2013.

PKCS 11-cryptographic token interface standard (v2.20), June 2004.
PKCS 11 mechanisms v2.30: Cryptoki—draft 7, April 2009.
OASIS. PKCS 11-Cryptographic Token Interface Standard v2.40, Committee Specification Draft 03, July 2014.

R. R. Housley, W. Polk, W. Ford, and D. Solo. RFC 3280: Internet X.509 public key infrastructure certificate
and certificate revocation list (CRL) profile, April 2002.

Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albert, and Yarik Markov. The first collision for full
SHA-1. Cryptology ePrint Archive, Report 2017/190, eprint.iacr.org/2017/190, February 2017. [accessed
2017-04-18].

Certicom Research. Standards for Efficient Cryptography, SEC 2: Recommended Elliptic Curve Domain
Parameters, version 2.0, January 2010.

52



IBM Enterprise PKCS#11 v1, rev. 288, 2010-03-20 20:50:40Z
Security Target doc. tree state: 3dd4d9e83607

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612-613, November 1979.

[SK99] Bruce Schneier and John Kelsey. Secure audit logs to support computer forensics. ACM Transactions on
Information and System Security (TISSEC), 2(2):159-176, May 1999.

[SKHO5]  J. Schaad, B. Kaliski, and R. Housley. RFC 4055: Additional algorithms and identifiers for RSA cryptography
for use in the internet X.509 public key infrastructure certificate and certificate revocation list (CRL) profile,
June 2005.

[Smal3] Nigel P. Smart. Algorithms, key sizes and parameters report — 2013 recommendations. Technical report,
EU/ENISA, October 2013.

[SMZ14]  Michele Spagnuolo, Federico Maggi, and Stefano Zanero. Bitlodine: extracting intelligence from the Bitcoin
network. In Financial Cryptography and Data Security, volume (to appear) of Lecture Notes in Computer
Science (LNCS). Springer-Verlag, March 2014.

[Stel3] Marc  Stevens. Counter-cryptanalysis. Cryptology  ePrint  Archive,  Report 2013/358,
eprint.iacr.org/2013/358, June 2013. [accessed 2017-08-28].

[Str16] Falko Strenzke. An analysis of OpenSSL's random number generator. Cryptology ePrint Archive, Report
2016/367, eprint.iacr.org/2016/367, April 2016. [accessed 2016-05-23].

[TBY*09] S. Turner, D. Brown, K. Yiu, R. Housley, and T. Polk. RFC 5480: Elliptic curve cryptography subject public
key information, March 2009.

[TKE19] IBM. (z/OS Cryptographic Services ICSF) Trusted Key Entry Workstation User’s Guide (version 2r3, SC14-
7511-05), February 20109.

[VDO14] Tamds Visegrady, Silvio Dragone, and Michael Osborne. Stateless cryptography for virtual environments. /IBM
Journal of Research and Development, 58(1), January 2014.

[Wou12] Karel Wouters. Hash-chain based protocols for time-stamping and secure logging: formats, analysis and design.
PhD thesis, Katholieke Universiteit Leuven, June 2012.

Security target revision: 288, last archived: 2019-03-20 20:59:40 (UTC)
Documentation tree hash: 3dd4d9e83607, check-in by user tvi (Tamas Visegrady).

53



	Introduction
	TOE major security features
	TOE description
	Externally observable TOE functionality levels
	TOE software architecture

	Conformance claims
	Security problem definition
	Assumptions
	Threats
	Organizational security policies

	Security objectives
	Security objectives, TOE
	Security objectives, Operational environment
	Security objectives, rationale

	Security requirements
	Security functional requirements
	Security assurance requirements
	Security requirements rationale

	Security functions
	Secure key management, internal
	Secure maintenance of keystores, host-based
	Cryptographic operations
	Application identification and authentication
	Policy enforcement
	Key virtualization
	Selftests
	Audit
	Administrative services
	Secure storage
	Protection against physical attacks


